【題目】我們把定義域?yàn)?/span>且同時(shí)滿(mǎn)足以下兩個(gè)條件的函數(shù)稱(chēng)為函數(shù):(1)對(duì)任意的,總有;(2)若,則有成立,下列判斷正確的是(

A.函數(shù),則

B.函數(shù),則上為增函數(shù)

C.函數(shù)上是函數(shù)

D.函數(shù)上是函數(shù)

【答案】ABD

【解析】

利用函數(shù)的定義對(duì)每一個(gè)命題逐一分析,必須同時(shí)滿(mǎn)足函數(shù)的兩個(gè)條件,才是函數(shù),否則就是假命題.

A.因?yàn)閷?duì)任意的,總有,所以,又因?yàn)?/span>,則有成立,所以所以,綜合得,所以若函數(shù),則,是真命題;

B.設(shè)所以

因?yàn)?/span>

所以若函數(shù),則上為增函數(shù),是真命題;

C.顯然函數(shù)滿(mǎn)足條件(1),如果所以;如果設(shè)所以,所以函數(shù)上是函數(shù)”是假命題;

D.顯然,所以滿(mǎn)足條件(1),,所以滿(mǎn)足條件(2.所以函數(shù)上是函數(shù)是真命題.

故選:ABD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下判斷正確的是 ( )

A. 函數(shù)上的可導(dǎo)函數(shù),則為函數(shù)極值點(diǎn)的充要條件

B. 若命題為假命題,則命題與命題均為假命題

C. ,則的逆命題為真命題

D. 中,“”是“”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2-2ax-1+a,a∈R.

(1)若a=2,試求函數(shù)y=(x>0)的最小值;

(2)對(duì)于任意的x∈[0,2],不等式f(x)≤a成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域?yàn)?/span>R,并且圖象關(guān)于y軸對(duì)稱(chēng),當(dāng)x≤-1時(shí),yf(x)的圖象是經(jīng)過(guò)點(diǎn)(-2,0)(-1,1)的射線(xiàn),又在yf(x)的圖象中有一部分是頂點(diǎn)在(0,2),且經(jīng)過(guò)點(diǎn)(1,1)的一段拋物線(xiàn).

(1)試求出函數(shù)f(x)的表達(dá)式,作出其圖象;

(2)根據(jù)圖象說(shuō)出函數(shù)的單調(diào)區(qū)間,以及在每一個(gè)單調(diào)區(qū)間上函數(shù)是增函數(shù)還是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限(年)和所支出的維修費(fèi)用(萬(wàn)元)有如下統(tǒng)計(jì)資料:

/

2

3

4

5

6

/萬(wàn)元

若由資料知, 對(duì)呈線(xiàn)性相關(guān)關(guān)系,試求:

1)回歸直線(xiàn)方程;

2)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?

參考公式:回歸直線(xiàn)方程: .其中

(注: )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象過(guò)點(diǎn),且不等式的解集為.

1)求的解析式;

2)若在區(qū)間上有最小值,求實(shí)數(shù)的值;

3)設(shè),若當(dāng)時(shí),函數(shù)的圖象恒在圖象的上方,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P是拋物線(xiàn)y2=﹣8x上一點(diǎn),設(shè)P到此拋物線(xiàn)準(zhǔn)線(xiàn)的距離是d1,到直線(xiàn)x+y﹣10=0的距離是d2,則dl+d2的最小值是__.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),解不等式;

(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的取值范圍;

(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過(guò)1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為研究晝夜溫差大小與某疾病的患病人數(shù)之間的關(guān)系,經(jīng)查詢(xún)得到今年上半年每月15號(hào)的晝夜溫差情況與患者的人數(shù)如表:

日期

115

215

315

415

515

615

晝夜溫差

10

11

10

10

9

7

患者人數(shù)個(gè)

21

26

20

18

16

8

研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線(xiàn)性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)25月份的數(shù)據(jù),求出y關(guān)于x的線(xiàn)性回歸方程;

若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線(xiàn)性回歸方程是理想的,試問(wèn)中所得線(xiàn)性回歸方程是否理想?

參考公式:,

查看答案和解析>>

同步練習(xí)冊(cè)答案