已知矩形ABCD,AB=2,BC=x,將△ABD沿矩形的對角線BD所在的直線進(jìn)行翻折,在翻折過程中,則( 。
分析:設(shè)BC=x,若存在某個位置,使得直線AB與直線CD垂直,則CD⊥平面ABC,則CD⊥AC,從而可得x>2,結(jié)合選項(xiàng)即可判斷
解答:解:設(shè)BC=x
∵BC⊥CD
若存在某個位置,使得直線AB⊥CD垂直,則CD⊥平面ABC
則CD⊥AC
Rt△ACD中,CD=2,AD=x,則由直角邊小于斜邊可知,AD>CD,即x>2
結(jié)合選項(xiàng)可知只要選項(xiàng)C中x=4時,有符合條件的位置
故選C
點(diǎn)評:本題主要考查了直線與平面垂直的判斷及性質(zhì)的簡單應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知矩形ABCD中,AB=2
2
,BC=1.以AB的中點(diǎn)O為原點(diǎn)建立如圖所示的平面直角坐標(biāo)系xoy.
(1)求以A,B為焦點(diǎn),且過C,D兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)P(0,2)的直線l與(1)中的橢圓交于M,N兩點(diǎn),是否存在直線l,使得以線段MN為直徑的圓恰好過原點(diǎn)?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩形ABCD的頂點(diǎn)都在半徑為5的球O的球面上,且AB=6,BC=2
5
,則棱錐O-ABCD的側(cè)面積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知矩形ABCD中,AB=
2
,AD=1,將△ABD沿BD折起,使點(diǎn)A在平面BCD內(nèi)的射影落在DC上.
(1)求證:平面ADC⊥平面BCD;
(2)求點(diǎn)C到平面ABD的距離;
(3)若E為BD中點(diǎn),求二面角B-AD-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD,過A作SA⊥平面AC,再過A作AE⊥SB,交SB于E,過E作EF⊥SC交SC于F.

(1)求證:AF⊥SC;

(2)若平面AEF交SD于G,求證:AG⊥SD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩形ABCD中,A(-4,4)、D(5,7),中心E在第一象限內(nèi)且與y軸的距離為一個單位,動點(diǎn)P(x,y)沿矩形一邊BC運(yùn)動,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案