已知四邊形ABCD是菱形,BAD60°,四邊形BDEF是矩形,平面BDEF平面ABCD,G,H分別是CE,CF的中點(diǎn).

(1)求證:平面AEF平面BDGH

(2)若平面BDGH與平面ABCD所成的角為60°,求直線CF與平面BDGH所成的角的正弦值.

 

1)見解析(2

【解析】(1)GH分別為CE,CF的中點(diǎn),

所以EFGH,

連接ACBD交于O,因?yàn)樗倪呅?/span>ABCD是菱形,所以OAC的中點(diǎn),

連接OGOG是三角形ACE的中位線,OGAE,

EFAEEGHOGG,則平面AEF平面BDGH,

(2)因?yàn)?/span>BFBD,平面BDEF平面ABCD,

所以BF平面ABCD,

EF的中點(diǎn)N,連接ON,則ONBFON平面ABCD,

建立空間直角坐標(biāo)系如圖所示,設(shè)AB2,BFt,

B(1,0,0)C(0,0)F(1,0,t)

H,(1,0,0),

設(shè)平面BDGH的法向量為n1(x,y,z),

n1(0,-t),

平面ABCD的法向量n2(0,0,1)

|cosn1,n2|,所以t29,t3.

所以(1,-,3),設(shè)直線CF與平面BDGH所成的角為θ,

sin θ|cos,n1|.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-1練習(xí)卷(解析版) 題型:填空題

如圖,ABC∽△AFE,EF8,且ABCAFE的相似比是32,則BC等于________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-6-3練習(xí)卷(解析版) 題型:填空題

橢圓1(a>b>0)的左、右頂點(diǎn)分別是A、B,左、右焦點(diǎn)分別是F1F2.|AF1|,|F1F2||F1B|成等比數(shù)列,則此橢圓的離心率為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-6-1練習(xí)卷(解析版) 題型:解答題

已知直線lyxmmR.

(1)若以點(diǎn)M(2,0)為圓心的圓與直線l相切于點(diǎn)P,且點(diǎn)Py軸上,求該圓的方程;

(2)若直線l關(guān)于x軸對(duì)稱的直線為l,問直線l與拋物線Cx24y是否相切?說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-6-1練習(xí)卷(解析版) 題型:選擇題

已知圓(xa)2(yb)2r2的圓心為拋物線y24x的焦點(diǎn),且與直線3x4y20相切,則該圓的方程為(  )

A(x1)2y2 Bx2(y1)2

C(x1)2y21 Dx2(y1)21

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-5-3練習(xí)卷(解析版) 題型:選擇題

正三棱柱ABCA1B1C1的棱長(zhǎng)都為2,E,F,GAB,AA1,A1C1的中點(diǎn),則B1F與平面GEF所成角的正弦值為(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-5-2練習(xí)卷(解析版) 題型:解答題

如圖,AB是圓O的直徑,PA垂直圓O所在的平面,C是圓O上的點(diǎn).

(1)求證:BC平面PAC;

(2)設(shè)QPA的中點(diǎn),GAOC的重心,求證:QG平面PBC.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-5-1練習(xí)卷(解析版) 題型:選擇題

如圖,有一個(gè)水平放置的透明無蓋的正方體容器,容器高8 cm,將一個(gè)球放在容器口,再向容器內(nèi)注水,當(dāng)球面恰好接觸水面時(shí)測(cè)得水深為6 cm,如果不計(jì)容器的厚度,則球的體積為(  )

A.cm3 B.cm3 C. cm3 D.cm3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-3-1練習(xí)卷(解析版) 題型:填空題

函數(shù)f(x)sin xcos xcos 2x的最小正周期T________,振幅A________.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案