如圖,四棱錐S-ABCD中,ABCD為矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=
3
AD
.E為CD上一點,且CE=3DE.
(1)求證:AE⊥平面SBD;
(2)求二面角A-SB-D的余弦值.
考點:用空間向量求平面間的夾角,直線與平面垂直的判定
專題:空間角
分析:(1)以D為原點建立空間直角坐標系D-xyz,利用向量法能證明AE⊥平面SBD.
(2)分別求出平面SBD的一個法向量和平面SAB的一個法向量,利用向量法能求出二面角的余弦值.
解答: (1)證明:由題意知DS,DA,DC兩兩垂直,
∴以D為原點建立空間直角坐標系D-xyz,如圖所示.
則:D(0,0,0),A(0,a,0),B(0,a,2a),C(0,0,2a),E(0,0,
a
2
),S(
3
a,0,0)
DS
=(
3
a,0,0)
,
DB
=(0,a,2a)
,
AE
=(0,-a,
a
2
)
,
AE
DS
=0+0+0=0
AE
DB
=0-a2+a2=0.

∴AE⊥DS,AE⊥DB,又DS∩DB=D,
∴AE⊥平面SBD.…(7分)
(2)由(1)知
n
=
AE
=(0,-a,
a
2
)
為平面SBD的一個法向量.
又∵
AB
=(0,0,2a),
SA
=(-
3
a,a,0)
,
設平面SAB的一個法向量為m=(x,y,z),
m•
AB
=0
m•
SA
=0
,即
2az=0
-
3
ax+ay=0
,
取x=1,得
m
=(1,
3
,0)
,…(12分)
∴cos<
m
,
n
>=
-
3
a
4
(-a)2+(
a
2
)2
=-
15
5

 觀察知二面角A-SD-B為銳角,
∴所求的二面角的余弦值為
15
5
.…(15分)
點評:本題考查直線與平面垂直的證明,考查二面角的余弦值的求法,解題時要認真審題,注意向量法的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

對于區(qū)間[a,b]上有意義的兩個函數(shù)f(x)與g(x),如果對于區(qū)間[a,b]中的任意數(shù)x均有|f(x)-g(x)|≤1,則稱函數(shù)f(x)與g(x)在區(qū)間[a,b]上是密切函數(shù),[a,b]稱為密切區(qū)間.若m(x)=x2-3x+4與n(x)=2x-3在某個區(qū)間上是“密切函數(shù)”,則它的一個密切區(qū)間可能是( 。
A、[3,4]
B、[2,4]
C、[1,4]
D、[2,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由-1,0,1,2,3這五個數(shù)中選三個不同的數(shù)組成二次函數(shù)y=a2x+bx+c的系數(shù).
(1)開口向下的拋物線有幾條?
(2)開口向上且不過原點的拋物線有多少條?
(3)與x軸的正、負半軸各有一個交點的拋物線有多少條?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在隨機抽查某中學高二級140名學生是否暈機的情況中,已知男學生56人,其中暈機有28人;女學生中不會暈機的為56人.不會暈機的男學生中有2人成績優(yōu)秀,不會暈機的女生中有4人成績優(yōu)秀.
(1)完成下面2×2列聯(lián)表的空白處;
暈機 不會暈機 合計
男學生 28 56
女學生 56
合計 140
(2)能否在犯錯誤的概率不超過0.05的前提下認為是否暈機與性別有關(guān)系?(k保留三位小數(shù))
(3)若從不會暈機的6名成績優(yōu)秀的學生中隨機抽取2人去國外參加數(shù)學競賽,試求所抽取的2人中恰有一人是男學生、一人是女學生的概率.(4分)
注:①參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
②常用數(shù)據(jù)表如下:
P(K2≥k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,ABCD是邊長為2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=
1
2
BD
(1)求證:BF∥平面ACE;
(2)求二面角B-AF-C的大小;
(3)求點F到平面ACE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知p:直線x-2y+3=0與拋物線y2=ax(a>0)沒有交點;q:方程
x2
4-a
+
y2
a-1
=1
表示橢圓;若p∧q為真命題,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知M(x1,y1)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上任意一點,F(xiàn)為橢圓的右焦點.
(1)若橢圓的離心率為e,試用e、a、x1表示|MF|,并求|MF|的最值;
(2)已知直線m與圓x2+y2=b2相切,并與橢圓交于A、B兩點,且直線m與圓的切點Q在y軸的右側(cè),若a=2,b=1,求△ABF的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

南昌二中某學生社團為了選拔若干名社團義務宣傳員,從300名志愿者中隨機抽取了50名進行有關(guān)知識的測試,成績(均為整數(shù))按分數(shù)段分成六組:第一組[40,50),第二組[50,60),…,第六組[90,100],第一、二、三組的人數(shù)依次構(gòu)成等差數(shù)列,如圖是按上述分組方法得到的頻率分布直方圖的一部分.規(guī)定成績不低于66分的志愿者入選為義務宣傳員.
(1)求第二組、第三組的頻率并補充完整頻率分布直方圖;
(2)由所抽取志愿者的成績分布,估計該社團的300名志愿者中有多少人可以入選為義務宣傳員?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖銳角三角形ABC的角平分線AD的延長線交它的外接圓于點E,若△ABC面積S=
3
4
AD•AE
,求∠BAC的大。

查看答案和解析>>

同步練習冊答案