【題目】定義首項為1且公比為正數(shù)的等比數(shù)列為“M-數(shù)列”.

1)已知等比數(shù)列{an}滿足:,求證:數(shù)列{an}為“M-數(shù)列”;

2)已知數(shù)列{bn}滿足:,其中Sn為數(shù)列{bn}的前n項和.

①求數(shù)列{bn}的通項公式;

②設(shè)m為正整數(shù),若存在“M-數(shù)列”{cn},對任意正整數(shù)k,當(dāng)km時,都有成立,求m的最大值.

【答案】(1)見解析;

(2)①bn=n;②5.

【解析】

1)由題意分別求得數(shù)列的首項和公比即可證得題中的結(jié)論;

2)①由題意利用遞推關(guān)系式討論可得數(shù)列{bn}是等差數(shù)列,據(jù)此即可確定其通項公式;

②由①確定的值,將原問題進行等價轉(zhuǎn)化,構(gòu)造函數(shù),結(jié)合導(dǎo)函數(shù)研究函數(shù)的性質(zhì)即可求得m的最大值.

1)設(shè)等比數(shù)列{an}的公比為q,所以a1≠0q≠0.

,得,解得

因此數(shù)列M數(shù)列”.

2)①因為,所以

,則.

,得

當(dāng)時,由,得,

整理得

所以數(shù)列{bn}是首項和公差均為1的等差數(shù)列.

因此,數(shù)列{bn}的通項公式為bn=n.

②由①知,bk=k.

因為數(shù)列{cn}M數(shù)列,設(shè)公比為q,所以c1=1q>0.

因為ckbkck+1,所以,其中k=1,23,m.

當(dāng)k=1時,有q≥1;

當(dāng)k=2,3,m時,有

設(shè)fx=,則

,得x=e.列表如下:

x

e

(e,+∞)

+

0

fx

極大值

因為,所以

,當(dāng)k=1,23,4,5時,,即,

經(jīng)檢驗知也成立.

因此所求m的最大值不小于5

m≥6,分別取k=3,6,得3≤q3,且q5≤6,從而q15≥243,且q15≤216,

所以q不存在.因此所求m的最大值小于6.

綜上,所求m的最大值為5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某超市2018年12個月的收入與支出數(shù)據(jù)的折線圖如圖所示:

根據(jù)該折線圖可知,下列說法錯誤的是( )

A. 該超市2018年的12個月中的7月份的收益最高

B. 該超市2018年的12個月中的4月份的收益最低

C. 該超市2018年1-6月份的總收益低于2018年7-12月份的總收益

D. 該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點在橢圓上,焦點為,圓O的直徑為

1)求橢圓C及圓O的標(biāo)準(zhǔn)方程;

2)設(shè)直線l與圓O相切于第一象限內(nèi)的點P,且直線l與橢圓C交于兩點.記 的面積為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中有大小相同的紅、黃兩種顏色的球各1個,從中任取1只,有放回地抽取3次.

求:(13只全是紅球的概率;

23只顏色全相同的概率;

33只顏色不全相同的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在貫徹中共中央、國務(wù)院關(guān)于精準(zhǔn)扶貧政策的過程中,某單位在某市定點幫扶某村戶貧困戶.為了做到精準(zhǔn)幫扶,工作組對這戶村民的年收入情況、危舊房情況、患病情況等進行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo).將指標(biāo)按照,,分成五組,得到如圖所示的頻率分布直方圖.規(guī)定若,則認(rèn)定該戶為絕對貧困戶,否則認(rèn)定該戶為相對貧困戶;當(dāng)時,認(rèn)定該戶為亟待幫住戶”.工作組又對這戶家庭的受教育水平進行評測,家庭受教育水平記為良好不好兩種.

1)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為絕對貧困戶數(shù)與受教育水平不好有關(guān):

受教育水平良好

受教育水平不好

總計

絕對貧困戶

相對貧困戶

總計

2)上級部門為了調(diào)查這個村的特困戶分布情況,在貧困指標(biāo)處于的貧困戶中,隨機選取兩戶,用表示所選兩戶中亟待幫助戶的戶數(shù),求的分布列和數(shù)學(xué)期望.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在底面為銳角三角形的直三棱柱中,是棱的中點,記直線與直線所成角為,直線與平面所成角為,二面角的平面角為,則(

A.B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三個校區(qū)分別位于扇形OAB的三個頂點上,點Q是弧AB的中點,現(xiàn)欲在線段OQ上找一處開挖工作坑P(不與點O,Q重合),為小區(qū)鋪設(shè)三條地下電纜管線PO,PA,PB,已知OA=2千米,∠AOB=,記∠APQ=θrad,地下電纜管線的總長度為y千米.

(1)將y表示成θ的函數(shù),并寫出θ的范圍;

(2)請確定工作坑P的位置,使地下電纜管線的總長度最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓經(jīng)過伸縮變換后得到曲線以坐標(biāo)原點為極點,軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長度,建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求曲線的直角坐標(biāo)方程及直線的直角坐標(biāo)方程;

(2)設(shè)點上一動點,求點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形, 為側(cè)棱的中點.

(Ⅰ)求證: ∥平面

(Ⅱ)若,,

求證:平面平面

查看答案和解析>>

同步練習(xí)冊答案