分析 (Ⅰ)運用離心率公式,結(jié)合a,b,c的關系,解方程可得a,進而得到橢圓方程;
(Ⅱ)設直線l的方程為x=my+t,代入橢圓方程可得(4+m2)y2+2mty+t2-4=0,運用韋達定理和弦長公式,以及點到直線的距離公式,三角形的面積公式,結(jié)合基本不等式即可得到最大值,計算化簡即可得到所求值為1.
解答 解:(Ⅰ)由題意可得b=1,且e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,
a2-b2=c2,
解得a=2,c=$\sqrt{3}$,
即有橢圓的方程為$\frac{{x}^{2}}{4}$+y2=1;
(Ⅱ)設直線l的方程為x=my+t,
代入橢圓方程可得(4+m2)y2+2mty+t2-4=0,
判別式為4m2t2-4(4+m2)(t2-4)>0,
即為4+m2>t2,
y1+y2═-$\frac{2mt}{4+{m}^{2}}$,y1y2=$\frac{{t}^{2}-4}{4+{m}^{2}}$,
則S=$\frac{1}{2}$d•|AB|=$\frac{1}{2}$$\frac{|t|}{\sqrt{1+{m}^{2}}}$•$\sqrt{1+{m}^{2}}$•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$
=$\frac{1}{2}$|t|•$\sqrt{\frac{4{m}^{2}{t}^{2}}{(4+{m}^{2})^{2}}-\frac{4{t}^{2}-16}{4+{m}^{2}}}$
=$\frac{\sqrt{{t}^{2}(4+{m}^{2}-{t}^{2})}}{4+{m}^{2}}$≤$\frac{\frac{{t}^{2}+4+{m}^{2}-{t}^{2}}{2}}{4+{m}^{2}}$=$\frac{1}{2}$,
當且僅當t2=4+m2-t2,即4+m2=2t2,S取得最大值$\frac{1}{2}$.
即有y${\;}_{1}^{2}$+y${\;}_{2}^{2}$=(y1+y2)2-2y1y2=(-$\frac{2mt}{4+{m}^{2}}$)2-2•$\frac{{t}^{2}-4}{4+{m}^{2}}$
=$\frac{{m}^{2}}{{t}^{2}}$-$\frac{{t}^{2}-4}{{t}^{2}}$=$\frac{4+{m}^{2}-{t}^{2}}{{t}^{2}}$=$\frac{2{t}^{2}-{t}^{2}}{{t}^{2}}$=1.
點評 本題考查橢圓的方程的求法,注意運用離心率公式,考查三角形的面積的最值的求法,注意運用點到直線的距離公式和弦長公式,以及基本不等式的運用,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2,1) | B. | (-2,-1) | C. | (2,1)或(-2,-1) | D. | (2,-1)或(-2,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x0∈A,x0∈B | B. | ?x0∈A,x0∈B | C. | A∩B=A | D. | A∩(∁uB)≠∅ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com