(2013•廣州一模)甲,乙,丙三位學(xué)生獨立地解同一道題,甲做對的概率為
1
2
,乙,丙做對的概率分別為m,n(m>n),且三位學(xué)生是否做對相互獨立.記ξ為這三位學(xué)生中做對該題的人數(shù),其分布列為:
ξ 0 1 2 3
P
1
4
a b
1
24
(1)求至少有一位學(xué)生做對該題的概率;
(2)求m,n的值;
(3)求ξ的數(shù)學(xué)期望.
分析:(1)利用“至少有一位學(xué)生做對該題”事件的對立事件的概率即可得出;
(2)利用P(ξ=0)與P(ξ=3)的概率即可得出m,n;
(3)利用(2)及a=P(ξ=1)=P(A
.
B
.
C
)+P(
.
A
B
.
C
)+P(
.
A
.
B
C)
與b=P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)即可得出a,b.
解答:解:設(shè)“甲做對”為事件A,“乙做對”為事件B,“丙做對”為事件C,
由題意知,P(A)=
1
2
,P(B)=m,P(C)=n

(1)由于事件“至少有一位學(xué)生做對該題”與事件“ξ=0”是對立的,
所以至少有一位學(xué)生做對該題的概率是1-P(ξ=0)=1-
1
4
=
3
4

(2)由題意知P(ξ=0)=P(
.
A
.
B
.
C
)=
1
2
(1-m)(1-n)=
1
4

           P(ξ=3)=P(ABC)=
1
2
mn=
1
24
,
整理得  mn=
1
12
m+n=
7
12

由m>n,解得m=
1
3
n=
1
4

(3)由題意知a=P(ξ=1)=P(A
.
B
.
C
)+P(
.
A
B
.
C
)+P(
.
A
.
B
C)
=
1
2
(1-m)(1-n)+
1
2
m(1-n)+
1
2
(1-m)n=
11
24
,
b=P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=
1
4
,
∴ξ的數(shù)學(xué)期望為Eξ=
1
4
+1×
11
24
+2×
1
4
+3×
1
24
=
13
12
點評:本小題主要考查相互獨立事件的概率、利用對立事件的概率求概率的方法、離散型隨機變量的均值等基礎(chǔ)知識,考查數(shù)據(jù)處理、推理論證、運算求解能力和應(yīng)用意識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州一模)
1
0
cosx
dx=
sin1
sin1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州一模)已知經(jīng)過同一點的n(n∈N*,n≥3)個平面,任意三個平面不經(jīng)過同一條直線.若這n個平面將空間分成f(n)個部分,則f(3)=
8
8
,f(n)=
n2-n+2
n2-n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州一模)函數(shù)f(x)=
2-x
+ln(x-1)
的定義域為
(1,2]
(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州一模)如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,點M為PC的中點.
(1)求證:PA∥平面BMD;
(2)求證:AD⊥PB;
(3)若AB=PD=2,求點A到平面BMD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州一模)已知n∈N*,設(shè)函數(shù)fn(x)=1-x+
x2
2
-
x3
3
+…-
x2n-1
2n-1
,x∈R

(1)求函數(shù)y=f2(x)-kx(k∈R)的單調(diào)區(qū)間;
(2)是否存在整數(shù)t,對于任意n∈N*,關(guān)于x的方程fn(x)=0在區(qū)間[t,t+1]上有唯一實數(shù)解?若存在,求t的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案