10.已知函數(shù)f(x)=ln|x|,g(x)=-x2+3,則f(x)•g(x)的圖象為( 。
A.B.C.D.

分析 根據(jù)f(x)•g(x)為偶函數(shù),排除A,D,根據(jù)函數(shù)的變化趨勢,排除B.

解答 解:f(x)=ln|x|,g(x)=-x2+3,則f(x)•g(x)=ln|x|•(-x2+3),
∴f(-x)•g(-x)=ln|-x|•(-(-x)2+3)=ln|x|•(-x2+3)=f(x)•g(x),
∴f(x)•g(x)為偶函數(shù),其圖象關于y軸對稱,排除A,D,
當x→+∞時,f(x)→+∞,g(x)→-∞,
∴f(x)•g(x)→-∞,排除B.
故選:C

點評 本題考查了函數(shù)圖象的識別,關鍵是掌握函數(shù)的奇偶性和函數(shù)的變化趨勢,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.如圖,AA1,BB1均垂直于平面ABC和平面A1B1C1,∠BAC=∠A1B1C1=90°,AC=AB=A1A=B1C1=$\sqrt{2}$,則多面體ABC-A1B1C1的外接球的表面積為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=cosαsinx+$\frac{3}{5}$cosx+1,α為常數(shù),α∈[$\frac{3π}{2}$,2π],且f($\frac{3π}{2}$)=$\frac{1}{5}$.
(1)求sinα和cos2α的值;
(2)求f(x)的最大值、最小值及最小正周期.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在區(qū)間(0,1)上隨機取兩個實數(shù)m,n,則關于x的一元二次方程x2-2$\sqrt{m}$x+2n=0有實數(shù)根的概率為(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知離心率為$\frac{{\sqrt{2}}}{2}$的橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)經過點A(1,$\frac{{\sqrt{2}}}{2}$).
(1)求橢圓E的方程;
(2)若不過點A的直線l:y=$\frac{{\sqrt{2}}}{2}$x+m交橢圓E于B,C兩點,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.如圖,已知邊長為4的菱形ABCD中,AC∩BD=O,∠ABC=60°.將菱形ABCD沿對角線AC折起得到三棱錐D-ABC,二面角D-AC-B的大小為60°,則直線BC與平面DAB所成角的正弦值為$\frac{3\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.橢圓C:$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的左焦點為F,右頂點為A1,過點F斜率為k的直線交橢圓C于A,B兩點,線段AB的中點為G,線段AB的垂直平分線交x軸于點D,交y軸于點E,O是坐標原點,記△GFD的面積為S1,記△OED的面積為S2
(I),求點D的坐標(用k表示);
(II)求$\frac{{2{S_1}{S_2}}}{S_1^2+S_2^2}$的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.定義運算a*b為執(zhí)行如圖所示的程序框圖輸出的S值,則(sin$\frac{5π}{12}}$)*(${cos\frac{5π}{12}}$)的值為( 。
A.$\frac{{2-\sqrt{3}}}{4}$B.$\frac{{2+\sqrt{3}}}{4}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設F為拋物線y=x2的焦點,則焦點F為( 。
A.(0,1)B.(1,0)C.(0,$\frac{1}{4}$)D.($\frac{1}{4}$,0)

查看答案和解析>>

同步練習冊答案