解:(I)當(dāng)p=3時(shí),函數(shù)f(x)=3x-
-2lnx,
f(1)=3-3-2ln1=0,f′(x)=3-
-
,
曲線f(x)在點(diǎn)(1,f(x))處的切線的斜率為f′(1)=3-3-2=4,
∴f(x)在點(diǎn)(1,f(x))處得切線方程為y-0=4(x-1),即y=4x-4;
(Ⅱ)f′(x)=p+
-
=
,(4分)
要使f(x)在定義域(0,+∞)內(nèi)是增函數(shù),只需f′(x)≥0在(0,+∞)內(nèi)恒成立,
即px
2-2x+p≥0在(0,+∞)上恒成立,(5分)
即p≥
在(0,+∞)上恒成立,
設(shè)M(x)=
,(x>0)(6分)
則M(x)=
=
,
∵x>0,∴x+
≥2,當(dāng)且僅當(dāng)x=1時(shí)取等號(hào),(7分)
∴M(x)≤1,即M(x)
max=1,∴p≥1,
所以實(shí)數(shù)p的取值范圍是[1,+∞);(8分)
(Ⅲ)∵f′(x)=
,令f′(x)=0,即px
2-2x+p=0(*)(9分)
設(shè)h(x)=px
2-2x+p,x∈(0,3),
當(dāng)p=0時(shí),方程(*)的解為x=0,此時(shí)f(x)在x∈(0,3)無極值,所以p≠0;
當(dāng)p≠0時(shí),h(x)=px
2-2x+p的對稱軸方程為x=
,
①若f(x)在x∈(0,3)恰好有一個(gè)極值,
則
或
,解得:0<p≤
,
此時(shí)f(x)在x∈(0,3)存在一個(gè)極大值;(11分)
②若f(x)在x∈(0,3)恰好兩個(gè)極值,即h(x)=0在x∈(0,3)有兩個(gè)不等實(shí)根
則
或
,解得:
<p<1,(13分)
∴0<p<1,
綜上所述,當(dāng)0<p<1時(shí),y=f(x)在x∈(0,3)存在極值.(14分)
分析:(I)把p=3代入f(x)中確定出解析式,求出f(1)確定出切點(diǎn)坐標(biāo)和導(dǎo)函數(shù),把x=1代入導(dǎo)函數(shù)中求出的導(dǎo)函數(shù)值即為切線方程的斜率,根據(jù)切點(diǎn)坐標(biāo)和斜率寫出切線方程即可;
(Ⅱ)求出f(x)的導(dǎo)函數(shù),要使函數(shù)在定義域內(nèi)位增函數(shù),即要導(dǎo)函數(shù)在定義域內(nèi)恒大于0,由導(dǎo)函數(shù)的分子解出p大于等于一個(gè)關(guān)系式,利用基本不等式求出這個(gè)關(guān)系式的最大值,進(jìn)而得到p的取值范圍;
(Ⅲ)求出f(x)的導(dǎo)函數(shù),令導(dǎo)函數(shù)等于0得到一個(gè)方程,記作(*),設(shè)方程的左邊為函數(shù)h(x),當(dāng)p=0時(shí)求出方程(*)的解為0,顯然函數(shù)無極值點(diǎn);當(dāng)p不為0時(shí),討論函數(shù)有一個(gè)極值和兩個(gè)極值,列出不等式組,求出不等式組的解集即可得到p的取值范圍.
點(diǎn)評(píng):此題考查學(xué)生會(huì)利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線方程的斜率,掌握函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,掌握函數(shù)在某點(diǎn)取得極值的條件,是一道中檔題.