7.已知P(x,y)滿足$\left\{\begin{array}{l}{x≤2}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$,則z=x-y最小值是-1.

分析 由題意,首先畫出平面區(qū)域,根據(jù)目標(biāo)函數(shù)的幾何意義,求z的最值.

解答 解:不等式組表示的平面區(qū)域如圖,
根據(jù)目標(biāo)函數(shù)z=x-y,即y=x-z,當(dāng)直線y=x-z經(jīng)過A時(shí)z最小,
由$\left\{\begin{array}{l}{y=1}\\{x+2y-2=0}\end{array}\right.$得到A(0,1),
所以z=x-y的最小值是0-1=-1.
故答案為:-1;

點(diǎn)評(píng) 本題考查了簡單線性規(guī)劃問題;關(guān)鍵是正確畫出平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義求最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知m為實(shí)數(shù),i為虛數(shù)單位,若m+(m2-1)i>0,則$\frac{m+i}{1-i}$=( 。
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)=x3-12x在區(qū)間(k,k+2)上不是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍( 。
A.k≤-4或-2≤k≤0或k≥2B.-4<k<2
C.-4<k<-2或0<k<2D.不存在這樣的實(shí)數(shù)k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)=3sin({\frac{x}{2}+\frac{π}{6}})+3$
(1)用五點(diǎn)法畫出它在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;
(2)指出f(x)的周期和單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若求O的半徑為4,且球心O到平面α的距離為$\sqrt{3}$,則平面α截球O所得截面圓的面積為( 。
A.πB.10πC.13πD.52π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an-a1,且a1,a2+1,a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;      
(2)求數(shù)列$\{\frac{1}{a_n}-n\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦點(diǎn)與其短軸的一個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)D$({1,\frac{3}{2}})$在橢圓C上,直線l:y=kx+m與橢圓C相交于A、P兩點(diǎn),與x軸、y軸分別相交于點(diǎn)N和M,且PM=MN,點(diǎn)Q是點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn),QM的延長線交橢圓于點(diǎn)B,過點(diǎn)A、B分別作x軸的垂涎,垂足分別為A1、B1
(1)求橢圓C的方程;
(2)是否存在直線l,使得點(diǎn)N平分線段A1B1?若存在,求求出直線l的方程,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列4個(gè)命題中正確命題的個(gè)數(shù)是
(1)對(duì)于命題p:?x0∈R,使得x02-1≤0,則¬p:?x∈R都有x2-1>0
(2)已知X~N(2,σ2),P(x>2)=0.5
(3)已知回歸直線的斜率的估計(jì)值是2,樣本點(diǎn)的中心為(4,5),則回歸直線方程為$\stackrel{∧}{y}$=2x-3
(4)“x≥1”是“x+$\frac{1}{x}$≥2”的充分不必要條件.( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在數(shù)列{an}中,已知a1+a2+…+an=2n-1,則a12+a22+…+an2=$\frac{1}{3}$(4n-1).

查看答案和解析>>

同步練習(xí)冊(cè)答案