解:(1)由題可得f(x)=-(x-1)
2+1+a,而0≤x≤3(3分)
所以m=f(1)=1+a,n=f(3)=a-3,(6分)
(2)由(1)求出的m和n得:角β終邊經(jīng)過點A(a,a),(7分)
①當a>0時,
,
則
,
所以,
;(10分)
②當a<0時,
,
則
,
所以
,(13分)
綜上①②得:
或
(14分)
分析:(1)把f(x)的解析式配方,根據(jù)x的范圍,由二次函數(shù)的圖象與性質(zhì)即可求出f(x)的最大值和最小值,進而用a表示出m和n;
(2)把求出的m和n代入點A的坐標,利用a表示出點A的坐標,然后分a大于0和小于0兩種情況考慮:當a大于0時,利用兩點間的距離公式求出點A到原點的距離,根據(jù)三角函數(shù)的定義求出sinβ和cosβ的值,然后把所求的式子利用兩角和的正弦函數(shù)公式及特殊角的三角函數(shù)值化簡后,將sinβ和cosβ的值代入即可求出值;當a小于0時,同理表示出點A到原點的距離,利用三角函數(shù)定義求出sinβ和cosβ的值,后把所求的式子利用兩角和的正弦函數(shù)公式及特殊角的三角函數(shù)值化簡后,將sinβ和cosβ的值代入即可求出值,綜上,得到所求式子的所有值.
點評:此題考查學(xué)生會求二次函數(shù)在閉區(qū)間上的最值,要求學(xué)生掌握任意角的三角函數(shù)定義,靈活運用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化簡求值,是一道中檔題.