設(shè)橢圓方程為,過點(diǎn)M(0,1)的直線l交橢圓于點(diǎn)A、B,O是坐標(biāo)原點(diǎn),點(diǎn)P滿足,點(diǎn)N的坐標(biāo)為,當(dāng)l繞點(diǎn)M旋轉(zhuǎn)時,求:
(1)動點(diǎn)P的軌跡方程;
(2)的最小值與最大值。
解:(1)直線l過點(diǎn)M(0,1)設(shè)其斜率為k,則l的方程為y=kx+1
、
由題設(shè)可得點(diǎn)A、B的坐標(biāo)、是方程組
的解
將①代入②并化簡得
所以
于是
設(shè)點(diǎn)P的坐標(biāo)為,
消去參數(shù)k得 ③
當(dāng)k不存在時,A、B中點(diǎn)為坐標(biāo)原點(diǎn)(0,0),也滿足方程③,
所以點(diǎn)P的軌跡方程為
(2)由點(diǎn)P的軌跡方程知,即
所以
故當(dāng),取得最小值,最小值為
當(dāng)時,取得最大值。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2005-2006學(xué)年北京市宣武區(qū)高二(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)橢圓方程為,過點(diǎn)M(0,1)的直線l交橢圓于點(diǎn)A、B,O是坐標(biāo)原點(diǎn),點(diǎn)P滿足,點(diǎn)N的坐標(biāo)為,當(dāng)l繞點(diǎn)M旋轉(zhuǎn)時,求:
(1)動點(diǎn)P的軌跡方程;
(2)的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省廣州六中高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)橢圓方程為,過點(diǎn)M(0,1)的直線l交橢圓于點(diǎn)A、B,O是坐標(biāo)原點(diǎn),點(diǎn)P滿足,點(diǎn)N的坐標(biāo)為,當(dāng)l繞點(diǎn)M旋轉(zhuǎn)時,求:
(1)動點(diǎn)P的軌跡方程;
(2)的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年河北省衡水市中學(xué)高二(上)第二次調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)橢圓方程為,過點(diǎn)M(0,1)的直線l交橢圓于點(diǎn)A、B,O是坐標(biāo)原點(diǎn),點(diǎn)P滿足,點(diǎn)N的坐標(biāo)為,當(dāng)l繞點(diǎn)M旋轉(zhuǎn)時,求:
(1)動點(diǎn)P的軌跡方程;
(2)的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三數(shù)學(xué)一輪復(fù)習(xí)單元檢測4:平面向量(解析版) 題型:解答題

設(shè)橢圓方程為,過點(diǎn)M(0,1)的直線l交橢圓于點(diǎn)A、B,O是坐標(biāo)原點(diǎn),點(diǎn)P滿足,點(diǎn)N的坐標(biāo)為,當(dāng)l繞點(diǎn)M旋轉(zhuǎn)時,求:
(1)動點(diǎn)P的軌跡方程;
(2)的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004年遼寧省高考數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)橢圓方程為,過點(diǎn)M(0,1)的直線l交橢圓于點(diǎn)A、B,O是坐標(biāo)原點(diǎn),點(diǎn)P滿足,點(diǎn)N的坐標(biāo)為,當(dāng)l繞點(diǎn)M旋轉(zhuǎn)時,求:
(1)動點(diǎn)P的軌跡方程;
(2)的最小值與最大值.

查看答案和解析>>

同步練習(xí)冊答案