已知函數(shù)f(x)的定義域?yàn)閇0,1],且同時(shí)滿足以下①②③三個(gè)條件:
①f(1)=3;
②f(x)≥2對(duì)一切x∈[0,1]恒成立;
③若a≥0,b≥0,a+b≤1,則f(a+b)≥f(a)+f(b)-2.
(1)求f(0);
(2)設(shè)x1,x2∈[0,1],且x1<x2,試證明f(x1)≤f(x2)并利用此結(jié)論求函數(shù)f(x)的最大值和最小值;
(3)試比較f(
1
2
)與
1
2
+2
(n∈N)的大小,并證明對(duì)一切x∈(0,1],都有f(x)<2x+2.
分析:(1)利用賦值法,令a=b=0,結(jié)合f(x)≥2對(duì)一切x∈[0,1]恒成立,我們可以求出f(0);
(2)利用f(x2)=f[(x2-x1)+x1]≥f(x2-x1)+f(x1)-2,我們可證得結(jié)論;
(3)利用賦值法,再進(jìn)行放縮,可得f(
1
2n
)≤
1
2n
+2
,對(duì)?x∈(0,1],總存在n∈N,滿足
1
2n+1
<x≤
1
2n
,這樣我們就可得到f(x)≤f(
1
2n
)≤
1
2n
+2
,由此結(jié)論成立.
解答:(1)解:令a=b=0,∴f(0)=f(0+0)≥2f(0)-2,∴f(0)≤2,
又∵f(0)≥2對(duì)一切x∈[0,1]恒成立,
∴f(0)=2
(2)證明:設(shè)x1,x2∈[0,1],x1<x2,則x2-x1∈[0,1]
∴f(x2)=f[(x2-x1)+x1]≥f(x2-x1)+f(x1)-2
∴f(x2)-f(x1)≥f(x2-x1)-2≥0
∴f(x1)≤f(x2
則當(dāng)0≤x≤1時(shí),f(0)≤f(x)≤f(1)
∴f(x)min=2,f(x)max=3
(3)證明:在③中令a=b=
1
2n
,得f(
1
2n-1
)≥
2f(
1
2n
)-2

f(
1
2n
)-2≤
1
2
[f(
1
2n-1
)-2]
≤…≤
1
2n
[f(
1
20
)-2]=
1
2n

f(
1
2n
)≤
1
2n
+2
   (Ⅰ)
對(duì)?x∈(0,1],總存在n∈N,滿足
1
2n+1
<x≤
1
2n

由(2)及(Ⅰ)得:f(x)≤f(
1
2n
)≤
1
2n
+2

又2x+2>
1
2n+1
+2=
1
2n
+2

∴f(x)<2x+2.
綜上所述,對(duì)任意x∈(0,1],f(x)<2x+2恒成立
點(diǎn)評(píng):抽象函數(shù)性質(zhì)的研究,賦值法是常用方法,單調(diào)性的證明,正確變形是關(guān)鍵,同時(shí)注意放縮法的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P滿足2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn;
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說法正確的有(  )個(gè).
①已知函數(shù)f(x)在(a,b)內(nèi)可導(dǎo),若f(x)在(a,b)內(nèi)單調(diào)遞增,則對(duì)任意的?x∈(a,b),有f′(x)>0.
②函數(shù)f(x)圖象在點(diǎn)P處的切線存在,則函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在;反之若函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在,則函數(shù)f(x)圖象在點(diǎn)P處的切線存在.
③因?yàn)?>2,所以3+i>2+i,其中i為虛數(shù)單位.
④定積分定義可以分為:分割、近似代替、求和、取極限四步,對(duì)求和In=
n
i=1
f(ξi)△x
中ξi的選取是任意的,且In僅于n有關(guān).
⑤已知2i-3是方程2x2+px+q=0的一個(gè)根,則實(shí)數(shù)p,q的值分別是12,26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長(zhǎng)度是一個(gè)定值,則AB的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(i)求函數(shù)f(x)的單調(diào)區(qū)間;
(ii)證明:若對(duì)于任意非零實(shí)數(shù)x1,曲線C與其在點(diǎn)P1(x1,f(x1))處的切線交于另一點(diǎn)P2(x2,f(x2)),曲線C與其在點(diǎn)P2(x2,f(x2))處的切線交于另一點(diǎn)P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則
S1S2
為定值;
(Ⅱ)對(duì)于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請(qǐng)給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-ax+b存在極值點(diǎn).
(1)求a的取值范圍;
(2)過曲線y=f(x)外的點(diǎn)P(1,0)作曲線y=f(x)的切線,所作切線恰有兩條,切點(diǎn)分別為A、B.
(。┳C明:a=b;
(ⅱ)請(qǐng)問△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案