已知F1(-c,0),F(xiàn)2(c,0)是雙曲線的左、右焦點(diǎn).若P為雙曲線右支上的一點(diǎn),滿足
PF1
PF2
=4ac,∠F1PF2=
π
3
,則該雙曲線的離心率是
 
考點(diǎn):雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:利用數(shù)量積運(yùn)算可得mn=16ac,再利用雙曲線的定義及其余弦定理即可得出.
解答: 解:設(shè)|
PF1
|
=m,|
PF2
|
=n,
PF1
PF2
=4ac,∠F1PF2=
π
3
,
1
2
mncos
π
3
=4ac
,化為mn=16ac.
又m-n=2a,4c2=m2+n2-2mncos
π
3
,
∴4c2=(m-n)2+mn=4a2+16ac,
∴e2-4e-1=0,e>1.
解得e=2+
5

故答案為:2+
5
點(diǎn)評(píng):本題考查了數(shù)量積運(yùn)算、雙曲線的定義及其余弦定理,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
20
+
y2
16
=1
,點(diǎn)A是橢圓與y軸的交點(diǎn),F(xiàn)為橢圓的右焦點(diǎn),直線l與橢圓交于B,C兩點(diǎn).
(1)若點(diǎn)M滿足:
AF
=2
FM
,
OM
=
1
2
(
OB
+
OC
)

①求點(diǎn)M的坐標(biāo);②求直線l的方程;
(2)設(shè)直線l的方程為y=kx+m,若
AB
AC
=0
,D在BC上,且
AD
BC
=0

①求證:直線l恒過一定點(diǎn),并求出該定點(diǎn)坐標(biāo);②求動(dòng)點(diǎn)D的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

彈簧振子的振動(dòng)是簡諧運(yùn)動(dòng),下表給出了振子在完成一次全振動(dòng)的過程中的時(shí)間t與位移s之間的對(duì)應(yīng)數(shù)據(jù),根據(jù)這些數(shù)據(jù)求出這個(gè)振子的振動(dòng)函數(shù)解析式.
t0t02t03t04t05t06t07t08t09t010t011t012t0
s-20.0-17.8-10.10.110.317.720.017.710.30.1-10.1-17.8-20.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:函數(shù)f(x)=
lnx
x
在區(qū)間(0,2)上是單調(diào)遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
px-p
-lnx(p>0).
(1)如果f(x)在[1,+∞)上單調(diào)遞增,求p的取值范圍;
(2)設(shè)an=
2n+1
n
,求證:a1+a2+…+an≥2ln(n+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對(duì)于任意實(shí)數(shù)m,關(guān)于x的方程log2(ax2+2x+1)-m=0恒有解,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的是( 。
A、有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形的幾何體叫棱錐
B、有兩個(gè)面平行,其余各面都是平行四邊形的幾何體叫棱柱
C、有一個(gè)面是多邊形,其余各面都是三角形的幾何體叫棱錐
D、有兩個(gè)面平行,其余各面都是四邊形的幾何體叫棱柱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班50位學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求x值;
(2)(理科)從成績不低于80分的學(xué)生中隨機(jī)的選取2人,該2人中成績?cè)?0以上(含90分)的人數(shù)記為ξ,求ξ的概率分布列及數(shù)學(xué)期望Eξ.
(文)從從成績不低于80分的學(xué)生中隨機(jī)的選取3人,該3人中至少有2人成績?cè)?0以上(含90分)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用二分法求函數(shù)f(x)=lnx+2x-6在區(qū)間(2,3)零點(diǎn)近似值,至少經(jīng)過( 。┐味趾缶_度達(dá)到0.1.
A、2B、3C、4D、5

查看答案和解析>>

同步練習(xí)冊(cè)答案