(本小題滿分13分)

  如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的

  左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢

  圓的焦點,設(shè)為該雙曲線上異于頂點的任一點,直線與橢圓的交點

  分別 為

   (Ⅰ)求橢圓和雙曲線的標準方程; 

   (Ⅱ)設(shè)直線、的斜率分別為、,證明;

   (Ⅲ)是否存在常數(shù),使得恒成立?

      若存在,求的值;若不存在,請說明理由.

                                                             

【解析】(Ⅰ)由題意知,橢圓離心率為,得,又,所以可解得,,所以,所以橢圓的標準方程為;所以橢圓的焦點坐標為(,0),因為雙曲線為等軸雙曲線,且頂點是該橢圓的焦點,所以該雙曲線的標準方程為。

(Ⅱ)設(shè)點P(,),則=,=,所以=,又點P(,)在雙曲線上,所以有,即,所以=1。

(Ⅲ)假設(shè)存在常數(shù),使得恒成立,則由(Ⅱ)知,所以設(shè)直線AB的方程為,則直線CD的方程為,由方程組消y得:,設(shè),,

則由韋達定理得:

所以|AB|==,同理可得

|CD|===,

又因為,所以有=+

=,所以存在常數(shù),使得恒成

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2015屆江西省高一第二次月考數(shù)學試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題

(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:河南省09-10學年高二下學期期末數(shù)學試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省高三5月月考調(diào)理科數(shù)學 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項.

(1) 求函數(shù)的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項和

 

 

查看答案和解析>>

同步練習冊答案