如圖所示,某地一天從6時(shí)至14時(shí)的溫度變化曲線近似滿足函數(shù)y=Asin(ωx+φ)+b。
(1)求這段時(shí)間的最大溫差;
(2)寫(xiě)出這段曲線的函數(shù)解析式;
(3)如果一天24小時(shí)內(nèi)的溫度均近似符合該函數(shù)關(guān)系式,求一天中溫度不小于25℃的時(shí)間有多長(zhǎng)?
解:(1)由圖所示,這段時(shí)間的最大溫差是30-10=20℃。
(2)圖中從6時(shí)到14時(shí)的圖象是函數(shù)的半個(gè)周期

解得
由圖所示,,
這時(shí)
將x=6,y=10代入上式,可取
綜上,所求的解析式為
。
(3),
解之得
取k=0,k=1可得


∴一天中溫度超過(guò)25℃的時(shí)間為
小時(shí)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,某地一天從6時(shí)到14時(shí)的溫度變化曲線近似滿足函數(shù)y=Asin(ωx+φ)+b,則8時(shí)的溫度大約為
 
°C(精確到1°C)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,某地一天從6~14時(shí)的溫度變化曲線近似滿足函數(shù):f(x)=Asin(ωx+φ)+b,x∈[6,14],則這段曲線的解析式為(  )
A、f(x)=12sin(
π
8
x+
4
)+12
B、f(x)=6sin(
π
8
x+
4
)+12
C、f(x)=6sin(
1
8
x+
4
)+12
D、f(x)=12sin(
1
8
x+
4
)+12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,某地一天從6時(shí)至14時(shí)的溫度變化曲線近似滿足y=Asin(ωx+φ)+b.
(1)求這段時(shí)間的最大溫差;
(2)寫(xiě)出這段曲線的函數(shù)解析式;
(3)如果一天24小時(shí)內(nèi)的溫度均近似符合該函數(shù)關(guān)系式,求一天中溫度不小于25℃的時(shí)間有多長(zhǎng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河北省保定市八校聯(lián)合體高一(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖所示,某地一天從6~14時(shí)的溫度變化曲線近似滿足函數(shù):f(x)=Asin(ωx+φ)+b,x∈[6,14],則這段曲線的解析式為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案