已知函數(shù)f(x)=ln-a+x(a>0).
(Ⅰ)若,求f(x)圖像在x=1處的切線的方程;
(Ⅱ)若的極大值和極小值分別為m,n,證明:
(Ⅰ);(Ⅱ)詳見解析.

試題分析:(Ⅰ)若,求圖像在處的切線的方程,須求圖像在處的切線的斜率,即的值,及的值,這樣需求參數(shù)的值,注意到條件,可以建立方程來確定參數(shù)的值,本題思維簡單,學(xué)生比較容易得分;(Ⅱ)證明:,需要求出的極大值和極小值,但此題是字母,不能求出,可考慮它們的和的問題,可設(shè)極大值點(diǎn),與極小值點(diǎn)分別為,利用根與系數(shù)關(guān)系,得,這樣就轉(zhuǎn)化為關(guān)于參數(shù)的關(guān)系式,利用導(dǎo)數(shù)求出的單調(diào)性,從而證出,此題出題新穎,構(gòu)思巧妙,確實(shí)是一個好題.
試題解析:(Ⅰ),,即 , ,圖像在處的切線的方程為,即;
(Ⅱ)設(shè)為方程的兩個實(shí)數(shù)根,則,由題意得: ,,,令,則,時(shí),是減函數(shù),則
 .
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)上是增函數(shù),
(1)求實(shí)數(shù)的取值集合;
(2)當(dāng)取值集合中的最小值時(shí),定義數(shù)列;滿足,,求數(shù)列的通項(xiàng)公式;
(3)若,數(shù)列的前項(xiàng)和為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)如果函數(shù)在區(qū)間上是單調(diào)函數(shù),求的取值范圍;
(Ⅱ)是否存在正實(shí)數(shù),使得函數(shù)在區(qū)間內(nèi)有兩個不同的零點(diǎn)(是自然對數(shù)的底數(shù))?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若曲線在點(diǎn)處的切線平行于軸,求的值;
(2)當(dāng)時(shí),若直線與曲線上有公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),()在處取得最小值.
(Ⅰ)求的值;
(Ⅱ)若處的切線方程為,求證:當(dāng)時(shí),曲線不可能在直線的下方;
(Ⅲ)若,()且,試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),設(shè)曲線在與軸交點(diǎn)處的切線為,的導(dǎo)函數(shù),滿足
(1)求;
(2)設(shè),,求函數(shù)上的最大值;
(3)設(shè),若對于一切,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若,證明:時(shí),成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)().
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),取得極值,求函數(shù)上的最小值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定義域?yàn)镽的奇函數(shù)f(x)的導(dǎo)函數(shù)為,當(dāng)時(shí),,若,則下列關(guān)于a,b,c的大小關(guān)系正確的是(     )
A.a(chǎn)>b>cB.a(chǎn)>c>bC.c>b>aD.b>a>c

查看答案和解析>>

同步練習(xí)冊答案