10.經(jīng)過點A(-1,4)且在x軸上的截距為3的直線方程是( 。
A.x+y+3=0B.x-y+3=0C.x+y-3=0D.x-y-3=0

分析 求出直線的斜率,然后求解直線方程.

解答 解:過經(jīng)過點A(-1,4)且在x軸上的截距為3的直線的斜率為:$\frac{4-0}{-1-3}$=-1.
所求的直線方程為:y-4=-(x+1),
即:x+y-3=0.
故選:C

點評 本題考查直線方程的求法,基本知識的考查.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為1:3,且成績分布在[40,100],分數(shù)在80以上(含80)的同學獲獎.按文理科用分層抽樣的方法抽取200人的成績作為樣本,得到成績的頻率分布直方圖(見圖).
(1)填寫下面的2×2列聯(lián)表,能否有超過95%的把握認為“獲獎與學生的文理科有關”?
(2)將上述調(diào)査所得的頻率視為概率,現(xiàn)從參賽學生中,任意抽取3名學生,記“獲獎”學生人數(shù)為X,求X的分布列及數(shù)學期望.
文科生理科生合計
獲獎5
不獲獎
合計200
附表及公式:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知隨機變量ξ的分布列為:
ξ-1012
Px$\frac{1}{3}$$\frac{1}{6}$y
若$E(ξ)=\frac{1}{3}$,則x+y=$\frac{1}{2}$,D(ξ)=$\frac{11}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.以(1,-1)為中點的拋物線y2=8x的弦所在直線的方程存在嗎?若存在,求出直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)f(x)=ax3+3x2+2,若f'(-1)=-12,則a的值等于-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知α,β是兩個不同的平面,l,m是兩條不同直線,l⊥α,m?β.給出下列命題:
①α∥β⇒l⊥m;②α⊥β⇒l∥m;③m∥α⇒l⊥β;  ④l⊥β⇒m∥α.
其中正確的命題是①④. (填寫所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設函數(shù)f(x)=ex-ax2+1,曲線y=f(x)在x=1處的切線方程為y=bx+2.
(1)求a,b的值;
(2)若方程F(x)=f(x)-mx有兩個極值點x1,x2(x1<x2),x0是x1與x2的等差中項;
(i)求實數(shù)m的取值范圍;
(ii)求證:f′(x0)<0 ( f′(x)為f(x)的導函數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知雙曲線C的兩焦點為F1,F(xiàn)2,離心率為$\frac{4}{3}$,拋物線y2=16x的準線過雙曲線C的一個焦點,若以線段F1F2為直徑的圓與雙曲線交于四個點Pi(i=1,2,3,4),|PiF1|•|PiF2|=( 。
A.0B.7C.14D.21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.變量x,y滿足約束條件$\left\{\begin{array}{l}x+y≥0\\ x-2y+2≥0\\ mx-y≤0\end{array}\right.$若2x-y的最大值是2,則約束條件表示的平面區(qū)域面積為(  )
A.$\frac{8}{15}$B.$\frac{8}{3}$C.$\frac{4}{3}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習冊答案