已知函數(shù)f(x)=lnx-ax+1(x>0)
(1)若對任意的x∈[1,+∞),f(x)≤0恒成立,求實數(shù)a的最小值.
(2)若a=且關于x的方程f(x)=-+b在[1,4]上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍;
(3)設各項為正的數(shù)列{an}滿足:a1=1,an+1=lnan+an+2,n∈N*.求證:an≤2n-1.
【答案】分析:(1)求導數(shù)f′(x),對任意的x∈[1,+∞),f(x)≤0恒成立,等價于f(x)在[1,+∞)上的最大值小于等于0,根據(jù)a的范圍分類討論,利用導數(shù)即可求得f(x)的最大值;
(2)表示出方程,分離出b,然后構造函數(shù)g(x)=lnx+(x>0),利用導數(shù)可求出g(x)在[1,4]上的值域,作出g(x)的草圖,由圖象即可求得b的范圍;
(3)由(1)得a=1時f(x)≤0,即lnx≤x-1,則an+1=lnan+an+2可化為an+1≤an-1+an+2=2an+1,即an+1+1≤2(an+1),所以,由此構造n-1個不等式累乘即可得到結論;
解答:解:(1)f′(x)==(x>0),
當a≤0時,f′(x)>0,f(x)在[1,+∞)上單調(diào)遞增,
f(x)在[1,+∞)上無最大值,不合題意;
當0<即a≥1時,f′(x)≤0,f(x)在[1,+∞)上遞減,
所以f(x)在[1,+∞)上的最大值為f(1)=-a+1,
由f(x)≤0在[1,+∞)上恒成立,得-a+1≤0,解得a≥1;
即0<a<1時,x∈[1,)時f′(x)>0,f(x)遞增,x∈(,+∞)時f′(x)<0,f(x)遞減,
所以=-lna,則-lna≤0,解得a≥1,此時無解;
綜上,a≥1,所以實數(shù)a的最小值為1;
(2)f(x)=-+b,即lnx+=b,
令g(x)=lnx+(x>0),則g′(x)==,
當1≤x<2時g′(x)<0,g(x)遞減,當2<x≤4時g′(x)>0,g(x)遞增,
所以x=2時g(x)取得最小值為ln2-2,
又g(1)=-1,g(4)=ln4-1,所以g(x)的最大值為ln4-1,
作出g(x)在[1,4]上的草圖如下:

由于方程在[1,4]上恰有兩個不相等的實數(shù)根,
根據(jù)圖象可知b的范圍為(ln2-2,-1];
證明:(3)由(1)知,因為an+1=lnan+an+2,
所以an+1≤an-1+an+2=2an+1,即an+1+1≤2(an+1),
所以≤2×2×2×…×2=2n-1,即,
所以an+1≤2n,即
點評:本題考查利用導數(shù)求函數(shù)在閉區(qū)間上的最值、數(shù)列與不等式的綜合、函數(shù)恒成立等知識,解決(3)問的關鍵是借助(1)問結論恰當構造不等式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案