【題目】已知橢圓的左、右焦點(diǎn),離心率為,點(diǎn)是橢圓上的動(dòng)點(diǎn),的最大面積是.
(1)求橢圓的方程;
(2)圓E經(jīng)過橢圓的左、右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線,為坐標(biāo)原點(diǎn),直線交橢圓于兩點(diǎn),且.
(i) 求直線的斜率;
(ii)當(dāng)的面積取到最大值時(shí),求直線的方程.
【答案】(1);(2)(i);(ii).
【解析】
(1)根據(jù)離心率建立等式,結(jié)合的最大面積是可求橢圓的方程;
(2)(i)利用圓的對(duì)稱性可得圓心為軸上一點(diǎn),結(jié)合,,三點(diǎn)共線可以表示出點(diǎn)的坐標(biāo),代入橢圓方程可求點(diǎn),進(jìn)而可得直線的斜率;
(ii)設(shè)出直線的方程,求出弦長(zhǎng),利用點(diǎn)到直線的距離公式求出三角形的高,結(jié)合面積公式及二次函數(shù)知識(shí)可求直線的方程.
(1)∵離心率,,
∴,,
面積的最大值為:,
∴,;
∴橢圓方程為.
(2)(i)∵圓經(jīng)過橢圓的兩個(gè)焦點(diǎn),
∴圓心為軸上一點(diǎn),設(shè)點(diǎn),
∵圓與橢圓在第一象限交于點(diǎn),∴,
∵,,三點(diǎn)共線,且是圓的一條直徑,
∴,
將點(diǎn)代入橢圓方程得到,即,
∴直線的斜率為.
(ii)∵,∴直線的斜率也為,設(shè)直線,,
聯(lián)立,得,
,∴,
,,
,
點(diǎn)到直線:的距離,
∴.
∴當(dāng),即時(shí)的面積最大,此時(shí)直線的方程為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年反映社會(huì)現(xiàn)實(shí)的電影《我不是藥神》引起了很大的轟動(dòng),治療特種病的創(chuàng)新藥研發(fā)成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場(chǎng)上治療一類慢性病的特效藥品的研發(fā)費(fèi)用(百萬(wàn)元)和銷量(萬(wàn)盒)的統(tǒng)計(jì)數(shù)據(jù)如下:
研發(fā)費(fèi)用(百萬(wàn)元) | 2 | 3 | 6 | 10 | 13 | 15 | 18 | 21 |
銷量(萬(wàn)盒) | 1 | 1 | 2 | 2.5 | 3.5 | 3.5 | 4.5 | 6 |
(1)根據(jù)數(shù)據(jù)用最小二乘法求出與的線性回歸方程(系數(shù)用分?jǐn)?shù)表示,不能用小數(shù));
(2)該藥企準(zhǔn)備生產(chǎn)藥品的三類不同的劑型,,
附:(1)(2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率是,過點(diǎn)做斜率為的直線,橢圓與直線交于兩點(diǎn),當(dāng)直線垂直于軸時(shí).
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)變化時(shí),在軸上是否存在點(diǎn),使得是以為底的等腰三角形,若存在求出的取值范圍,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年春節(jié)期間全國(guó)流行在微信群里發(fā)、搶紅包,現(xiàn)假設(shè)某人將688元發(fā)成手氣紅包50個(gè),產(chǎn)生的手氣紅包頻數(shù)分布表如表:
(I)求產(chǎn)生的手氣紅包的金額不小于9元的頻率;
(Ⅱ)估計(jì)手氣紅包金額的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅲ)在這50個(gè)紅包組成的樣本中,將頻率視為概率.
(i)若紅包金額在區(qū)間[21,25]內(nèi)為最佳運(yùn)氣手,求搶得紅包的某人恰好是最佳運(yùn)氣手的概率;
(ii)隨機(jī)抽取手氣紅包金額在[1,5)∪[﹣21,25]內(nèi)的兩名幸運(yùn)者,設(shè)其手氣金額分別為m,n,求事件“|m﹣n|>16”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若存在極值,求實(shí)數(shù)a的取值范圍;
(2)設(shè),設(shè)是定義在上的函數(shù).
(ⅰ)證明:在上為單調(diào)遞增函數(shù)(是的導(dǎo)函數(shù));
(ⅱ)討論的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),當(dāng)時(shí),的最小值為,且對(duì)任意的,不等式恒成立,則實(shí)數(shù)m的最大值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖為某街區(qū)道路示意圖,圖中的實(shí)線為道路,每段道路旁的數(shù)字表示單向通過此段道路時(shí)會(huì)遇見的行人人數(shù),在防控新冠肺炎疫情期間,某人需要從A點(diǎn)由圖中的道路到B點(diǎn),為避免人員聚集,此人選擇了一條遇見的行人總?cè)藬?shù)最小的從A到B的行走線路,則此人從A到B遇見的行人總?cè)藬?shù)最小值是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】明代商人程大位在公元1592年編撰完成《算法統(tǒng)宗》一書.書中有如下問題:“今有女子善織,初日遲,次日加倍,第三日轉(zhuǎn)速倍增,第四日又倍增,織成絹六丈七尺五寸.問各日織若干?”意思是:“有一位女子善于織布,第一天由于不熟悉有點(diǎn)慢,第二天起每天織的布都是前一天的2倍,已知她前四天共織布6丈7尺5寸,問這位女子每天織布多少?”根據(jù)文中的已知條件,可求得該女了第一天織布________尺,若織布一周(7天),共織________尺.(其中1丈為10尺,1尺為10寸)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),設(shè)它的左、右焦點(diǎn)分別為、,左頂點(diǎn)為,上頂點(diǎn)為,且滿足.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程和離心率;
(Ⅱ)過點(diǎn)作不與軸垂直的直線交橢圓于、(異于點(diǎn))兩點(diǎn),試判斷的大小是否為定值,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com