已知P點是60°的二面角內(nèi)一點,它到兩個半平面的距離分別為2和3,則它到棱的距離是
2
57
3
2
57
3
分析:設(shè)垂足分別為A,B,先計算AB的長,再利用△PAB外接圓的直徑為P到棱的距離,即可求得結(jié)論.
解答:解:由題意,設(shè)垂足分別為A,B,則
在△PAB中,PA=2,PB=3,∠APB=120°,∴AB2=4+9-2×2×3×cos∠APB=19
∴AB=
19

設(shè)P到棱的距離為l,則l=
AB
sin60°
=
2
57
3

故答案為:
2
57
3
點評:本題考查點線距離的計算,解題的關(guān)鍵是正確運用余弦定理,正弦定理.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•海淀區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的四個頂點恰好是一邊長為2,一內(nèi)角為60°的菱形的四個頂點.
(I)求橢圓C的方程;
(II)若直線y=kx交橢圓C于A,B兩點,在直線l:x+y-3=0上存在點P,使得△PAB為等邊三角形,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•上海二模)如圖,在四棱錐P-ABCD中,已知AC與BD交于點O,PA⊥平面ABCD,底面ABCD是邊長為4的菱形,∠BAD=12°,PA=4.
(1)求證:BD⊥平面PAC;
(2)若點E在線段BO上,且二面角E-PC-A的大小為60°,求線段OE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,點A、B是單位圓上的兩點,A、B點分別在第一、二象限,點C是圓與x軸正半軸的交點,若∠COA=60°∠AOB=α,點B的坐標為(-
3
5
,
4
5
)

(1)求sinα的值;
(2)已知動點P沿圓弧從C點到A點勻速運動至少需要2秒鐘,若動點P從A點到C點按逆時針方向作圓周運動,求點P到x軸的距離d關(guān)于時間t(秒)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學 來源:2009年浙江省溫州市瑞安中學高考數(shù)學三模試卷(理科)(解析版) 題型:解答題

如圖,點A、B是單位圓上的兩點,A、B點分別在第一、二象限,點C是圓與x軸正半軸的交點,若∠COA=60°∠AOB=α,點B的坐標為
(1)求sinα的值;
(2)已知動點P沿圓弧從C點到A點勻速運動至少需要2秒鐘,若動點P從A點到C點按逆時針方向作圓周運動,求點P到x軸的距離d關(guān)于時間t(秒)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學 來源:2009年浙江省溫州市瑞安中學高考數(shù)學三模試卷(文科)(解析版) 題型:解答題

如圖,點A、B是單位圓上的兩點,A、B點分別在第一、二象限,點C是圓與x軸正半軸的交點,若∠COA=60°∠AOB=α,點B的坐標為
(1)求sinα的值;
(2)已知動點P沿圓弧從C點到A點勻速運動至少需要2秒鐘,若動點P從A點到C點按逆時針方向作圓周運動,求點P到x軸的距離d關(guān)于時間t(秒)的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習冊答案