(2012•樂山二模)設(shè)全集U={1,3,5,7},集合A={3,5},B={1,3,7},則A∩(?UB)等于(  )
分析:直接運(yùn)用補(bǔ)集和交集的概念求解.
解答:解:∵全集U={1,3,5,7},B={1,3,7},
∴?UB={5},
又∵集合A={3,5},
∴A∩(?UB)={3,5}∩{5}={5}.
故選A.
點(diǎn)評:本題考查補(bǔ)集與交集的混合運(yùn)算,是會考常見題型,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•樂山二模)已知x、y∈R+,x+y=4-2xy,則x+y的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•樂山二模)一個頻率分布表(樣本容量為30)不小心被損壞了一部分(如圖),只記得樣本中數(shù)據(jù)在[20,60)上的頻率為0.8,則估計樣本在[40,50),[50,60)內(nèi)的數(shù)據(jù)個數(shù)可能是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•樂山二模)若函數(shù)f(x)的導(dǎo)數(shù)為f′(x)=-x(x+1),則函數(shù)g(x)=f(logax)(0<a<1)的單調(diào)減區(qū)間為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•樂山二模)如圖,球O夾在銳二面角α-l-β之間,與兩個半平面的切點(diǎn)分別為A、B,若AB=
3
,球心O到二面角的棱l的距離為2,則球O的表面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•樂山二模)對于非空集合A、B,定義運(yùn)算A⊕B={x|x∈A∪B,且x∉A∩B.已知兩個開區(qū)間M=(a,b),N=(c,d),其中a、b、c、d滿足a+b<c+d,ab=cd<0,則M⊕N=(  )

查看答案和解析>>

同步練習(xí)冊答案