(理)在等比數(shù)列{an}中,a1>0,n∈N*,且a5-a4=8,又a2、a8的等比中項(xiàng)為16.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log4an,數(shù)列{bn}的前n項(xiàng)和為Sn,是否存在正整數(shù)k,使得
1
S2
+
1
S3
+…+
1
Sn
>k對(duì)任意n>1且n∈N*恒成立.若存在,求出正整數(shù)k的值或范圍;若不存在,請(qǐng)說(shuō)明理由.
考點(diǎn):數(shù)列與不等式的綜合,等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列,不等式的解法及應(yīng)用
分析:(1)由已知a2、a8的等比中項(xiàng)為16得到a5=16,結(jié)合a5-a4=8求得a4,則等比數(shù)列的公比可求,通項(xiàng)公式可求;
(2)把數(shù)列{an}的通項(xiàng)公式代入bn=log4an,化簡(jiǎn)后得到數(shù)列{bn}是等差數(shù)列且求得公差,利用等差數(shù)列的求和公式求和后取倒數(shù),得到
1
Sn
=
4
n-1
-
4
n
,代入
1
S2
+
1
S3
+…+
1
Sn
放縮后求其最小值,則答案可求.
解答: 解:(1)設(shè)數(shù)列{an}的公比為q,
由a2、a8的等比中項(xiàng)為16,得a5=16,
又a5-a4=8,則a4=8.
∴q=
a5
a4
=
16
8
=2

∴an=a4qn-4=8×2n-4=2n-1;
(2)∵bn=log4an=log42n-1=
n-1
2
,
∴數(shù)列{bn}為以0為首項(xiàng),以
1
2
為公差的等差數(shù)列,
∴Sn=b1+b2+…+bn=
n(n-1)
4

1
Sn
=
4
n(n-1)
=
4
n-1
-
4
n
,
1
S2
+
1
S3
+…+
1
Sn

=4(1-
1
2
+
1
2
-
1
3
+…+
1
n-1
-
1
n
)=4(1-
1
n
)≥4(1-
1
2
)=2
,
即k<2,
∴正整數(shù)k的值為1.
點(diǎn)評(píng):本題考查等比數(shù)列的性質(zhì),考查等差數(shù)列的前n項(xiàng)和的求法,訓(xùn)練了裂項(xiàng)相消法求數(shù)列的和,訓(xùn)練了利用放縮法證明不等式,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x-1|+2|x+1|+1.
(Ⅰ)求不等式f(x)<6的解集;
(Ⅱ)若直線y=(
1
3
a(a∈R)與函數(shù)y=f(x)的圖象恒有公共點(diǎn),求實(shí)數(shù)a的取值區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了了解高一年級(jí)學(xué)生的身高情況,某校按10%的比列對(duì)全校800名高一年級(jí)學(xué)生按性別進(jìn)行抽樣調(diào)查,得到如下頻數(shù)分布表:
表1:男生身高頻數(shù)分布表
身高(cm) [160,165) [165,170) [170,175) [175,180) [180,185) [185,190)
頻數(shù) 2 5 14 13 4 2
表2:女生身高頻數(shù)分布表
身高(cm) [150,155) [155,160) [160,165) [165,170) [170,175) [175,180)
頻數(shù) 2 12 16 6 3 1
(1)分別估計(jì)高一年級(jí)男生和女生的平均身高;
(2)在樣本中,從身高180cm以上的男生中任選2人,求至少有一人身高在185cm以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD是矩形,AD=2AB,SA=SD,SA⊥AB,N是棱AD的中點(diǎn).
(Ⅰ)求證:AB∥平面SCD;
(Ⅱ)求證:SN⊥平面ABCD;
(Ⅲ)在棱SC上是否存在一點(diǎn)P,使得平面PBD⊥平面ABCD?若存在,求出
SP
PC
的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=xsinx+cosx+x2(x∈R).
(Ⅰ)判斷函數(shù)f(x)的單調(diào)性;
(Ⅱ)解不等式(文)f(x)<f(2);     
(理)f(log0.5x)<f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD,PB⊥AC,Q是線段PB的中點(diǎn).
(Ⅰ)求證:AB⊥平面PAC:
(Ⅱ)求證:AQ∥平面PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正三角形ABC的邊長(zhǎng)為2,D、E、F分別在三邊AB,BC和CA上,且D為AB的中點(diǎn),∠EDF=90°,∠BDE=θ(0°<θ<90°).
(1)當(dāng)tan∠DEF=
3
2
時(shí),求θ的大小;
(2)求△DEF的面積S的最小值及使得S取最小值時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
x≤3
x+y-3≥0
x-y+1≥0
,則x2+y2的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c∈R,a+b+c=0,a+bc-1=0,則a的取值范圍
 

查看答案和解析>>

同步練習(xí)冊(cè)答案