設函數(shù)f(x)的定義域為D,若對于任意的x1∈D,存在唯一x2∈D的使數(shù)學公式=C(C為常數(shù)),則稱函數(shù)f(x)在D上的均值為C.給出下列四個函數(shù):①y=x2;②y=x;③y=2x;④y=lgx;則滿足其在定義域上均值為2的所有函數(shù)是________(填寫序號).

②④
分析:首先分析題目求對于任意的x1∈D,存在唯一的x2∈D,使 成立的函數(shù).
對于函數(shù)①y=x2,可直接取任意的x1∈R,驗證求出兩個的 ,即可得到成立.故①錯;
對于函數(shù)②y=x,可直接取任意的x1∈R,驗證求出唯一的 x2=4-x1,即可得到成立.故②對.
對于函數(shù)③y=lgx,定義域為x>0,值域為R且單調,顯然成立.
對于函數(shù)④y=2x,特殊值法代入驗證不成立成立.即可得到答案.
解答:對于函數(shù)①y=x2,取任意的x1∈R,=2,,可以兩個的x2∈D.故不滿足條件.
對于函數(shù)②y=x,可直接取任意的x1∈R,驗證求出唯一的 x2=4-x1,即可得到成立.故②對.
對于函數(shù)③y=2x定義域為R,值域為y>0.對于x1=3,f(x1)=8.要使 成立,則f(x2)=-4,不成立.
對于函數(shù)④y=lgx,定義域為x>0,值域為R且單調,顯然必存在唯一的x2∈D,使 成立.故成立.
故答案為②④
點評:此題主要應用新定義的方式考查平均值不等式在函數(shù)中的應用.對于新定義的問題,需要認真分析定義內容,切記不可偏離題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當x∈[0,2]時,f(x)=2x-cosx,則a=f(-
3
2
)與b=f(
15
2
)的大小關系為
a>b
a>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)的定義域為D,若對于任意x1,x2∈D,當x1<x2時,都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設函數(shù)f(x)為定義在[0,1]上的非減函數(shù),且滿足以下三個條件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③當x∈[0,
1
4
]
時,f(x)≥2x恒成立.則f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

設函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當x∈[0,2]時,f(x)=2x-cosx,則a=f(-數(shù)學公式)與b=f(數(shù)學公式)的大小關系為________.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年安徽省蚌埠二中高三(上)12月月考數(shù)學試卷(文科)(解析版) 題型:填空題

設函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當x∈[0,2]時,f(x)=2x-cosx,則a=f(-)與b=f()的大小關系為   

查看答案和解析>>

科目:高中數(shù)學 來源:山東省月考題 題型:填空題

設函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當x∈[0,2]時,f(x)=2x﹣cosx,則a=f(﹣)與b=f()的大小關系為(    ).

查看答案和解析>>

同步練習冊答案