(2014·寧波模擬)在平面直角坐標(biāo)系中,A(,1),B點(diǎn)是以原點(diǎn)O為圓心的單位圓上的動(dòng)點(diǎn),則|+|的最大值是(  )

A.4 B.3 C.2 D.1

 

B

【解析】由題意可知向量的模是不變的,所以當(dāng)同向時(shí),|+|最大,結(jié)合圖形可知,|+|max=||+1=+1=3.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(二)(解析版) 題型:填空題

函數(shù)f(x)=x3-x2+ax-5在區(qū)間[-1,2]上不單調(diào),則實(shí)數(shù)a的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(一)(解析版) 題型:填空題

已知定義在R上的偶函數(shù)滿足:f(x+4)=f(x)+f(2),且當(dāng)x∈[0,2]時(shí),y=f(x)單調(diào)遞減,給出以下四個(gè)命題:

①f(2)=0;

②x=-4為函數(shù)y=f(x)圖象的一條對(duì)稱軸;

③函數(shù)y=f(x)在[8,10]上單調(diào)遞增;

④若方程f(x)=m在[-6,-2]上的兩根為x1,x2,則x1+x2=-8.

以上命題中所有正確命題的序號(hào)為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第四章平面向量、數(shù)系擴(kuò)充與復(fù)數(shù)引入(解析版) 題型:解答題

已知平面向量a=(,-1),b=.

(1)若x=(t+2)a+(t2-t-5)b,y=-ka+4b(t,k∈R),且x⊥y,求出k關(guān)于t的關(guān)系式k=f(t).

(2)求函數(shù)k=f(t)在t∈(-2,2)上的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第四章平面向量、數(shù)系擴(kuò)充與復(fù)數(shù)引入(解析版) 題型:填空題

已知向量a=(1,3),b=(-2,-6),|c|=,若(a+b)·c=5,則a與c的夾角為_(kāi)_________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第四章平面向量、數(shù)系擴(kuò)充與復(fù)數(shù)引入(解析版) 題型:選擇題

已知向量a=(-1,2),則下列向量與a共線的是(  )

A.b=(1,-2) B.b=(2,-1)

C.b=(0,1) D.b=(1,1)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第十章 算法初步、統(tǒng)計(jì)、統(tǒng)計(jì)案例(解析版) 題型:解答題

(2014·泰安模擬)某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)400名高一學(xué)生的一周課外體育鍛煉時(shí)間進(jìn)行調(diào)查,結(jié)果如下表所示:

鍛煉時(shí)間

(分鐘)

[0,20)

[20,40)

[40,60)

[60,80)

[80,100)

[100,120)

人數(shù)

40

60

80

100

80

40

現(xiàn)采用分層抽樣的方法抽取容量為20的樣本.

(1)其中課外體育鍛煉時(shí)間在分鐘內(nèi)的學(xué)生應(yīng)抽取多少人?

(2)若從(1)中被抽取的學(xué)生中隨機(jī)抽取2名,求這2名學(xué)生課外體育鍛煉時(shí)間均在分鐘內(nèi)的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第十章 算法初步、統(tǒng)計(jì)、統(tǒng)計(jì)案例(解析版) 題型:選擇題

國(guó)慶節(jié)放假,甲去北京旅游的概率為,乙、丙去北京旅游的概率分別為,,假定三人的行動(dòng)相互之間沒(méi)有影響,那么這段時(shí)間內(nèi)至少有1人去北京旅游的概率為(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第八章 平面解析幾何(解析版) 題型:選擇題

(2014·咸寧模擬)雙曲線-=1的漸近線與圓x2+(y-2)2=1相切,則雙曲線離心率為(  )

A. B. C.2 D.3

 

查看答案和解析>>

同步練習(xí)冊(cè)答案