【題目】已知函數(shù) .

(Ⅰ)當時,求曲線處的切線方程;

(Ⅱ)當時,討論函數(shù)的單調(diào)性;

(Ⅲ)設(shè)斜率為的直線與函數(shù)的圖象交于, 兩點,其中,求證: .

【答案】(1)(2)見解析

【解析】試題分析:(1)首先求得切線斜率 ,且,據(jù)此由點斜式寫出切線方程.

(2)由令,得, .分類討論: , 三種情況即可得到函數(shù)的單調(diào)區(qū)間;

(3)經(jīng)分析可知,證明原問題只需證明,構(gòu)造函數(shù),可證得,即得證.

試題解析:

(Ⅰ)當時, ),

),.

,所以切線方程為,即.

(Ⅱ),令,得 .

①當,即時,令,得;令,得

所以當時, 單調(diào)增區(qū)間為;單調(diào)減區(qū)間為.

②當,即時,令,得

所以當, 單調(diào)增區(qū)間為;單調(diào)減區(qū)間為.

③當,即時, ,

易知單調(diào)增區(qū)間為 .

(Ⅲ)根據(jù)題意, .(以下用分析法證明)

要證,只要證

只要證,

,則只需證: ,令,

,所以上遞增,

,即,同理可證: ,

綜上, ,即得證.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 的最小正周期為π.
(1)求 的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間及其圖象的對稱軸方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)分別是三個內(nèi)角的對邊.

(1),求的值;

(2),試判斷的形狀,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 底面,底面是直角梯形, , , 的中點.

1)求證:平面平面

2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省電視臺為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示:

其中一個數(shù)字被污損.

(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率.

(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對成語知識的學習積累的熱情,從中獲益匪淺.現(xiàn)從觀看該節(jié)目的觀眾中隨機統(tǒng)計了4位觀眾的周均學習成語知識的時間(單位:小時)與年齡(單位:歲),并制作了對照表(如下表所示)

年齡(歲)

20

30

40

50

周均學習成語知識時間(小時)

2.5

3

4

4.5

由表中數(shù)據(jù),試求線性回歸方程,并預(yù)測年齡為55歲觀眾周均學習成語知識時間.

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 , ,且 ,f(x)= ﹣2λ| |(λ為常數(shù)),求:
(1) 及| |;
(2)若f(x)的最小值是 ,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:

將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.

(1)根據(jù)已知條件完成上面的列聯(lián)表,若按的可靠性要求,并據(jù)此資料,你是否認為“體育迷”與性別有關(guān)?

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為.若每次抽取的結(jié)果是相互獨立的,求分布列,期望和方差.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,0<β< ,cos( +α)=﹣ ,sin( +β)= ,求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖三棱柱中,側(cè)面為菱形,

(1)證明: ;

(2)若, ,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案