12.若復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$滿足$({1+i})•\overline z=3+i$,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于第一象限.

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,求出z,進(jìn)一步得到$\overline{z}$的坐標(biāo)得答案.

解答 解:由(1+i)•$\overline{z}$=3+i,得$\overline{z}=\frac{3+i}{1+i}=\frac{(3+i)(1-i)}{(1+i)(1-i)}=2-i$,
∴z=2+i,其對應(yīng)的點(diǎn)的坐標(biāo)為(2,1),位于第一象限.
故答案為:一.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.?dāng)?shù)列{an}滿足:a1=$\frac{4}{3}$,且an+1=$\frac{4(n+1){a}_{n}}{3{a}_{n}+n}$,(n∈N+),則$\frac{1}{{a}_{1}}$+$\frac{2}{{a}_{2}}$+$\frac{3}{{a}_{3}}$+…+$\frac{2016}{{a}_{2016}}$=$2015\frac{2}{3}+\frac{1}{3•{4}^{2016}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知E(2,0),F(xiàn)(2,2)分別為正方形ABCD的邊AB與CD的中點(diǎn).
(1)求正方形ABCD外接圓的方程;
(2)求對角線AC與BD所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=|x|+$\frac{a}{x^2}$(其中a∈R)的圖象不可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}是等差數(shù)列,a1+a2+a3=6,a5=5.
( I)求數(shù)列{an}的通項公式;
( II)若${b_n}={a_n}•{2^{a_n}},(n∈N*)$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|(x+2)(x-6)<0},B={-3,5,6,8}則A∩B等于(  )
A.{-3,5}B.{-3}C.{5}D.?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知點(diǎn)$\overrightarrow{a}$=(3,m),$\overrightarrow$=(1,-2),若$\overrightarrow{a}$•$\overrightarrow$+3$\overrightarrow$2=0,則實數(shù)m=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=1+2cosxcos(x+3φ)是偶函數(shù),其中φ∈(0,$\frac{π}{2}$),則下列關(guān)于函數(shù)g(x)=cos(2x-φ)的正確描述是( 。
A.g(x)在區(qū)間[-$\frac{π}{12},\frac{π}{3}$]上的最小值為-1.
B.g(x)的圖象可由函數(shù)f(x)向上平移2個單位,在向右平移$\frac{π}{3}$個單位得到.
C.g(x)的圖象可由函數(shù)f(x)的圖象先向左平移$\frac{π}{3}$個單位得到.
D.g(x)的圖象可由函數(shù)f(x)的圖象先向右平移$\frac{π}{3}$個單位得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,正方體ABCD-A1B1C1D1中,求異面直線AD1與A1C1所成的角.

查看答案和解析>>

同步練習(xí)冊答案