9.設(shè)log37=a,log32=b,則log72=$\frac{a}$.

分析 直接利用導(dǎo)數(shù)運(yùn)算法則化簡(jiǎn)求解即可.

解答 解:log37=a,log32=b,則log72=$\frac{lo{g}_{3}2}{lo{g}_{3}7}$=$\frac{a}$.
故答案為:$\frac{a}$.

點(diǎn)評(píng) 本題考查對(duì)數(shù)運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知二次函數(shù)f1(x)的圖象以原點(diǎn)為頂點(diǎn)且過(guò)點(diǎn)(1,1),反比例函數(shù)f2(x)的圖象與直線y=x交于A、B兩點(diǎn),且|AB|=8,f(x)=f1(x)+f2(x).
(1)求f(x)的解析式;
(2)求證:當(dāng)a>3時(shí),關(guān)于x的方程f(x)=f(a)共有三個(gè)實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,點(diǎn)A(1,2)為拋物線C上一點(diǎn).
(1)求C的方程;
(2)若點(diǎn)B(1,-2)在C上,過(guò)B作C的兩弦BP與BQ,若kBP•kBQ=-2,求證:直線PQ過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知$\vec a$=(-1,3),$\vec b$=(1,t),若($\vec a$-2$\vec b$)⊥$\vec a$,則|${\vec b}$|=(  )
A.5B.$\sqrt{2}$C.$\sqrt{10}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=2cos2x-sin2x.
(1)當(dāng)x∈[-$\frac{3π}{8}$,$\frac{π}{4}$]時(shí),求函數(shù)f(x)的單調(diào)區(qū)間和值域;
(2)已知△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,若a=2,b=$\sqrt{2}$,其f($\frac{A}{2}$)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.△ABC的頂點(diǎn)坐標(biāo)分別為A(2,-4),B(6,6),C(-2,0),求:
(1)平行于三角形BC邊的中位線所在的直線方程;
(2)BC邊上的中線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.復(fù)數(shù)z=$\frac{2}{1+i}$(i是虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)是(  )
A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在x($\sqrt{x}$-$\frac{1}{x}$)9的展開式中,x的系數(shù)為(  )
A.36B.-36C.84D.-84

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax+1-a(x≥0)}\\{f(x+2)(x<0)}\end{array}\right.$.
(1)若a=-8,求當(dāng)-6≤x≤5時(shí),|f(x)|的最大值;
(Ⅱ)對(duì)于任意實(shí)數(shù)x1(x1≤3),存在x2(x2≠x1),使得f(x2)=f(x1),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案