精英家教網 > 高中數學 > 題目詳情

已知圓C與y軸相切,圓心在直線x-3y=0上,且在直線y=x上截得的弦長2 .求 圓C的方程.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本小題滿分10分)選修4-4:坐標系與參數方程
已知曲線的極坐標方程是,曲線的參數方程是
是參數).
(1)寫出曲線的直角坐標方程和曲線的普通方程;
(2)求的取值范圍,使得,沒有公共點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分) 已知圓的圓心軸上,半徑為1,直線,被圓所截的弦長為,且圓心在直線的下方.
(I)求圓的方程;
(II)設,若圓的內切圓,求△的面積
的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分10分)已知圓C過點(4,-1),且與直線相切于點.
(Ⅰ)求圓C的方程;
(II)是否存在斜率為1的直線l,使得l被圓C截得弦AB,以AB為直徑的圓經過原點,若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分).已知圓與直線相切。
(1)求以圓O與y軸的交點為頂點,直線在x軸上的截距為半長軸長的橢圓C方程;
(2)已知點A,若直線與橢圓C有兩個不同的交點E,F,且直線AE的斜率與直線
AF的斜率互為相反數;問直線的斜率是否為定值?若是求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)光線l過點P(1,-1),經y軸反射后與圓C:(x-4)2+(y-4)2=1
相切,求光線l所在的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設O為坐標原點,曲線x2+y2+2x-6y+1=0上有兩點P、Q,滿足關于直線x+my+4=0對稱,又滿足·=0.
(1)求m的值;
(2)求直線PQ的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

雙曲線的虛軸長等于(     )

A. B.-2t C. D.4

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,圓C:,直線.
(1) 當a為何值時,直線與圓C相切;
(2) 當直線與圓C相交于A、B兩點,且時,求直線的方程.

查看答案和解析>>

同步練習冊答案