用n個(gè)不同的實(shí)數(shù)a1,a2,…an可得n!個(gè)不同的排列,每個(gè)排列為一行寫成(1 2 3)
一個(gè)n!行的數(shù)陣.對(duì)第i行ai1,ai2,…ain,記bi=-ai1+2ai2-3ai3+…+(-1)nnain,(1 3 2)
i=1,2,3,…,n。1,2,3可你數(shù)陣如下,由于此數(shù)陣中每一列各數(shù)之和都(2 1 3)是12,所以,b1+b2+…+b6=-12+2×12-3×12=-24.那么,在用1,2,3,4,5形成(2 3 1)的數(shù)陣中,求b1+b2+…+b120的值.(3 1 2)(3 2 1)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
那么,在用1、2、3、4、5形成的數(shù)陣中,b1+b2+…+b120=___________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
用n個(gè)不同的實(shí)數(shù)a1,a2,…,an可得n!個(gè)不同的排列,每個(gè)排列為一行寫成一個(gè)n!行的數(shù)陣.對(duì)第i行ai1,ai2,…,ain,記bi= -ai1+2ai2 -3ai3+…+(-1)n nain,i=1,2,3,…,n!。用1,2,3可得數(shù)陣如下,
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
由于此數(shù)陣中每一列各數(shù)之和都是12,所以,b1+b2+…+b6= -12+212-312=-24。那么,在用1,2,3,4,5形成的數(shù)陣中.b1+b2+…+b120等于( )
(A)-3600 (B) 1800 (C)-1080 (D)-720
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com