【題目】【2017重慶二診】已知函數(shù),.
(1)分別求函數(shù)與在區(qū)間上的極值;
(2)求證:對任意, .
【答案】(Ⅰ)在上有極小值,無極大值; 在上有極大值,無極小值;(Ⅱ)見解析.
【解析】(Ⅰ)由題意,利用導(dǎo)數(shù)進行求解,首先求出函數(shù)極值點,再判斷極值點兩側(cè)的單調(diào)性,從而得出是否為極大值點,還是極小值點,問題即可得解;(Ⅱ)由(Ⅰ)知,可將分為和兩段進行證明,在區(qū)間上可比較兩個函數(shù)的極小值與極大值即,在區(qū)間上可考慮將兩函數(shù)作差構(gòu)造新函數(shù),再通過判斷新函數(shù)的單調(diào)性和最值,從而問題可得證.
試題解析:(Ⅰ) , ,
故在和上遞減,在上遞增,
在上有極小值,無極大值; , ,
故在上遞增,在上遞減,
在上有極大值,無極小值;
(Ⅱ)由(Ⅰ)知,當(dāng)時, , ,故;
當(dāng)時, ,令,則,
故在上遞增,在上遞減, , ;
綜上,對任意, .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓Γ: + =1(a>b>0)的右焦點與短軸兩端點構(gòu)成一個面積為2的等腰直角三角形,O為坐標(biāo)原點:
(1)求橢圓Г的方程:
(2)設(shè)點A在橢圓Г上,點B在直線y=2上,且OA⊥OB,求證: + 為定值:
(3)設(shè)點C在Γ上運動,OC⊥OD,且點O到直線CD距離為常數(shù)d(0<d<2),求動點D的軌跡方程:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,AB=PA=1,AD= ,F(xiàn)是PB中點,E為BC上一點.
(1)求證:AF⊥平面PBC;
(2)當(dāng)BE為何值時,二面角C﹣PE﹣D為45°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017山西孝義考前熱身】已知函數(shù) (是常數(shù)),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,函數(shù)有零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中, 是自然對數(shù)的底數(shù).
(Ⅰ)若是上的增函數(shù),求的取值范圍;
(Ⅱ)若,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=120°,AC=3,△ABC的面積等于 ,D為邊長BC上一點.
(1)求BC的長;
(2)當(dāng)AD= 時,求cos∠CAD的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)
設(shè)△ABC三個內(nèi)角A、B、C所對的邊分別為a,b,c. 已知C=,acosA=bcosB.
(1)求角A的大。
(2)如圖,在△ABC的外角∠ACD內(nèi)取一點P,使得PC=2.過點P分別作直線CA、CD的垂線PM、PN,垂足分別是M、N.設(shè)∠PCA=α,求PM+PN的最大值及此時α的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分為16分)已知函數(shù).
(1)若,求函數(shù)的極值,并指出極大值還是極小值;
(2)若,求函數(shù)在上的最值;
(3)若,求證:在區(qū)間上,函數(shù)的圖象在的圖象下方.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com