14.已知向量|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,$\overrightarrow{a}$,$\overrightarrow$的夾角為60°,如果$\overrightarrow{a}$⊥($\overrightarrow{a}$+λ$\overrightarrow$),則λ=-4.

分析 根據(jù)平面向量的垂直的條件以及數(shù)量積運算即可求出

解答 解:向量|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,$\overrightarrow{a}$,$\overrightarrow$的夾角為60°,
∵$\overrightarrow{a}$⊥($\overrightarrow{a}$+λ$\overrightarrow$),
∴$\overrightarrow{a}$•($\overrightarrow{a}$+λ$\overrightarrow$)=0,
∴$\overrightarrow{a}$2+λ$\overrightarrow{a}$$\overrightarrow$=0,
即4+λ×2×1×$\frac{1}{2}$=0,
解得λ=-4,
故答案為:-4

點評 本題考查了平面向量的垂直的條件,數(shù)量積運算等基礎(chǔ)知識,考查了運算求解能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知等差數(shù)列{an}的前n項和為Sn,公差d≠0.且a3+S5=42,a1,a4,a13成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列bn=$\frac{1}{{a}_{n-1}{a}_{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知($\sqrt{3}$+i)•z=-i(i是虛數(shù)單位),那么復數(shù)z對應的點位于復平面內(nèi)的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知點A(0,1),B(3,2),向量$\overrightarrow{BC}=(-7,-4)$,則向量$\overrightarrow{AC}$=( 。
A.(10,7)B.(10,5)C.(-4,-3)D.(-4,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知全集U={x|x=2n,n∈Z},集合A={-2,0,2,4},B={-2,0,4,6,8},則∁UA)∩B=( 。
A.{2,8}B.{6,8}C.{2,4,6}D.{2,4,8}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,四邊形ABCD為正方形,PD⊥平面ABCD,CE⊥平面ABCD,CE=AB,PD=λCE(λ>1)
(1)求證:PE⊥AD
(2)若該幾何體的體積被平面BED分成VB-CDE:V多面體ABDEP=1:4的兩部分,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}({1-x})+1,-1≤x<k\\{x^3}-3x+2,k≤x≤a\end{array}\right.$,若存在k使得函數(shù)f(x)的值域為[0,2],則實數(shù)a的取值范圍是( 。
A.$({1,\sqrt{3}}]$B.(0,1]C.[0,1]D.$[{1,\sqrt{3}}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設函數(shù)f(x)=$\frac{\sqrt{2{x}^{2}+1}}{\sqrt{5-x}}$+$\sqrt{x-2}$的定義域為集合A,且B={x|-3<x-4<4},C={x|x<a-1或x>a}.
(1)求A和(∁RA)∩B;
(2)若A∪C=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設全集U=R,已知$A=\left\{{x\left|{\frac{2x+3}{x-2}>0}\right.}\right\},B=\left\{{x\left|{|{x-1}|<2}\right.}\right\}$,則A∩B={x|2<x<3}.

查看答案和解析>>

同步練習冊答案