【題目】已知點(diǎn)A(﹣ ,0),B( ,0),動(dòng)點(diǎn)E滿足直線EA與直線EB的斜率之積為﹣ .
(1)求動(dòng)點(diǎn)E的軌跡C的方程;
(2)設(shè)過(guò)點(diǎn)F(1,0)的直線l1與曲線C交于點(diǎn)P,Q,記點(diǎn)P到直線l2:x=2的距離為d.
(。┣ 的值;
(ⅱ)過(guò)點(diǎn)F作直線l1的垂線交直線l2于點(diǎn)M,求證:直線OM平分線段PQ.
【答案】
(1)解:設(shè)E(x,y),
依題意得 ,
整理得 ,
∴動(dòng)點(diǎn)E的軌跡C的方程為 .
(2)解:(ⅰ)F(1,0),設(shè)P(x1,y1)則 ,
∴ =
= .
(ⅱ)依題意,設(shè)直線PQ:x=my+1,Q(x2,y2),
聯(lián)立 可得(2+m2)y2+2my﹣1=0,
顯然 ,
所以線段PQ的中點(diǎn)T坐標(biāo)為 ,
又因?yàn)镕M⊥l1故直線FM的方程為y=﹣m(x﹣1),
所以點(diǎn)M的坐標(biāo)為(2,﹣m),
所以直線OM的方程為: ,
因?yàn)? 滿足方程 ,
故OM平分線段PQ.
【解析】(1)直譯法,利用斜率公式可求軌跡方程;(2)先設(shè)出直線l1的方程,然后帶入橢圓方程,通過(guò)消元化簡(jiǎn)得到關(guān)于x的一元二次方程,結(jié)合韋達(dá)定理,點(diǎn)到直線距離公式將所求表示出來(lái),帶入結(jié)論化簡(jiǎn)即可;(3)要證結(jié)論,只需分別求出直線OM的方程,PQ中點(diǎn)的坐標(biāo),然后證明坐標(biāo)適合方程即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一顆質(zhì)地均勻的骰子先后拋擲2次,觀察其向上的點(diǎn)數(shù),分別記為x,y.
(1)若記“x+y=8”為事件A,求事件A發(fā)生的概率;
(2)若記“x2+y2≤12”為事件B,求事件B發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+an+1=( )n , Sn=a1+3a2+32a3+…+3n﹣1an , 利用類似等比數(shù)列的求和方法,可求得4Sn﹣3nan= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中共有8個(gè)球,其中3個(gè)紅球、2個(gè)白球、3個(gè)黑球.若從袋中任取3個(gè)球,則所取3個(gè)球中至多有1個(gè)紅球的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)剛搬遷到新校區(qū),學(xué)?紤],若非住校生上學(xué)路上單程所需時(shí)間人均超過(guò)20分鐘,則學(xué)校推遲5分鐘上課.為此,校方隨機(jī)抽取100個(gè)非住校生,調(diào)查其上學(xué)路上單程所需時(shí)間(單位:分鐘),根據(jù)所得數(shù)據(jù)繪制成如下頻率分布直方圖,其中時(shí)間分組為[0,10),[10,20),[20,30),[30,40),[40,50].
(1)求頻率分布直方圖中a的值;
(2)從統(tǒng)計(jì)學(xué)的角度說(shuō)明學(xué)校是否需要推遲5分鐘上課;
(3)若從樣本單程時(shí)間不小于30分鐘的學(xué)生中,隨機(jī)抽取2人,求恰有一個(gè)學(xué)生的單程時(shí)間落在[40,50]上的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年高一新生入學(xué)后,為了了解新生學(xué)業(yè)水平,某區(qū)對(duì)新生進(jìn)行了水平測(cè)試,隨機(jī)抽取了50名新生的成績(jī),其相關(guān)數(shù)據(jù)統(tǒng)計(jì)如下:
分?jǐn)?shù)段 | 頻數(shù) | 選擇題得分24分以上(含24分) |
5 | 2 | |
10 | 4 | |
15 | 12 | |
10 | 6 | |
5 | 4 | |
5 | 5 |
(Ⅰ)若從分?jǐn)?shù)在, 的被調(diào)查的新生中各隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求恰好有2名新生選擇題得分不足24分的概率;
(Ⅱ)在(Ⅰ)的條件下,記選中的4名新生中選擇題得分不足24分的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩個(gè)袋子,其中甲袋中裝有編號(hào)分別為1、2、3、4的4個(gè)完全相同的球,乙袋中裝有編號(hào)分別為2、4、6的3個(gè)完全相同的球.
(Ⅰ)從甲、乙袋子中各取一個(gè)球,求兩球編號(hào)之和小于8的概率;
(Ⅱ)從甲袋中取2個(gè)球,從乙袋中取一個(gè)球,求所取出的3個(gè)球中含有編號(hào)為2的球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,該幾何體是由一個(gè)直三棱柱ADE﹣BCF和一個(gè)正四棱錐P﹣ABCD組合而成,AD⊥AF,AE=AD=2.
(Ⅰ)證明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱錐P﹣ABCD的高h(yuǎn),使得二面角C﹣AF﹣P的余弦值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合,對(duì)于集合的兩個(gè)非空子集, ,若,則稱為集合的一組“互斥子集”.記集合的所有“互斥子集”的組數(shù)為 (視與為同一組“互斥子集”).
(1)寫(xiě)出, , 的值;
(2)求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com