已知二次函數(shù)f(x)=x2+x的定義域D 恰是不等式 f(-x)+f(x)≤2|x|的解集,其值域?yàn)锳.函數(shù) g(x)=x3-3tx+
1
2
t
的定義域?yàn)閇0,1],值域?yàn)锽.
(1)求f (x) 的定義域D和值域 A;
(2)(理) 試用函數(shù)單調(diào)性的定義解決下列問(wèn)題:若存在實(shí)數(shù)x0∈(0,1),使得函數(shù) g(x)=x3-3tx+
1
2
t
在[0,x0]上單調(diào)遞減,在[x0,1]上單調(diào)遞增,求實(shí)數(shù)t的取值范圍并用t表示x0
(3)(理) 是否存在實(shí)數(shù)t,使得A⊆B成立?若存在,求實(shí)數(shù)t 的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
(4)(文) 是否存在負(fù)實(shí)數(shù)t,使得A⊆B成立?若存在,求負(fù)實(shí)數(shù)t 的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
(5)(文) 若函數(shù)g(x)=x3-3tx+
1
2
t
在定義域[0,1]上單調(diào)遞減,求實(shí)數(shù)t的取值范圍.
分析:(1)由f(-x)+f(x)=2x2≤2|x|的解集為為[-1,1]可求函數(shù)定義域D結(jié)合二次函數(shù)的性質(zhì)可求,值域A
(2)(理)在[0,x0]上任取x1,x2,且x1<x2,則g(x1)>g(x2)可得3t>x12+x22+x1x2≥3x02 同理 由在[x0,1]上單調(diào)遞增得3t≤3x02則 3t=3x02由x0∈(0,1)可求t的范圍
(3)(理) 由(2)的單調(diào)性分析同理可得 t 的不同取值,函數(shù)g(x)的單調(diào)性
①當(dāng) t≤0時(shí),函數(shù) g(x)=x3-3tx+在 x∈[0,1]單調(diào)遞增,可求B,進(jìn)而可求t的范圍
②當(dāng) 0<t<1 時(shí),函數(shù) g(x)的減區(qū)間為:[0,
t
]
;g(x)的增區(qū)間為:[
t
,1].
g(x)在 x=達(dá)到最小值.③當(dāng)t≥1時(shí),函數(shù) g(x) 在區(qū)間[0,1]單調(diào)遞減可求t的范圍
(4)(文) 即(3)(理) ①當(dāng) t≤0時(shí),函數(shù) g(x)=x3-3tx+在 x∈[0,1]單調(diào)遞增,可求B,進(jìn)而可求t的范圍
(5)(文) 類比 (2)(理)在[0,x0]上任取x1,x2,且x1<x2,則g(x1)>g(x2)可得3t>x12+x22+x1x2≥3x02 同理 由在[x0,1]上單調(diào)遞增得3t≤3x02則 3t=3x02由x0∈(0,1)可求t的范圍
解答:解:(1)∵f(-x)+f(x)=2x2≤2|x|的解集為為[-1,1]
函數(shù)定義域D=[-1,1]值域 A=[-
1
4
,2]
…(4分)
(2)(理)在[0,x0]上任取x1,x2,且x1<x2,則g(x1)>g(x2
x13-3tx1+
1
2
>  x23-3tx2+
1
2

∴3t>x12+x22+x1x2≥3x02                         …(6分)
同理 由在[x0,1]上單調(diào)遞增得3t≤3x02
所以 3t=3x02由x0∈(0,1)得t∈(0,1)…(10分)
(3)(理) 由(2)的單調(diào)性分析同理可得 t 的不同取值,函數(shù)g(x)的單調(diào)性
 ①當(dāng) t≤0時(shí),函數(shù) g(x)=x3-3tx+在 x∈[0,1]單調(diào)遞增,∴B=[,1-
5
2
t
],
t
2
≤-
1
4
且2≤1-
5
2
t,解得t≤-
1
2
,…(13分)
  ②當(dāng) 0<t<1 時(shí),函數(shù) g(x)的減區(qū)間為:[0,
t
]
;g(x)的增區(qū)間為:[
t
,1].
g(x)在 x=達(dá)到最小值.g(0)≥2或g(1)≥2;且g(
t
)≤-
1
4
此與0<t<1矛盾.          …(15分)
  ③當(dāng)t≥1時(shí),函數(shù) g(x) 在區(qū)間[0,1]單調(diào)遞減,∴B=[1-
5
2
t,
t
2
]
t
2
≥2且1-
5
2
t≤-
1
4
,即t≥4

綜上所述:t的取值范圍是:(-∞,-
1
2
]∪[4,+∞)
…(18分)
(4)(文)  即(3)(理)①
  當(dāng) t≤0時(shí),函數(shù) g(x)=x3-3tx+在 x∈[0,1]單調(diào)遞增,∴B=[,1-
5
2
t
],
t
2
≤-
1
4
且2≤1-
5
2
t,解得t≤-
1
2
,(10分)
(5)(文) 類比 (2)(理)  得t≥1                                     …(18分)
點(diǎn)評(píng):本題主要考查了絕對(duì)值不等式的解法,及二次函數(shù)閉區(qū)間上的最值的求解,函數(shù)的單調(diào)性的應(yīng)用,解答本題要求考生具備較強(qiáng)的邏輯推理的能力及計(jì)算的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
(I)若函數(shù)的圖象經(jīng)過(guò)原點(diǎn),且滿足f(2)=0,求實(shí)數(shù)m的值.
(Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)(0,1),且與x軸有唯一的交點(diǎn)(-1,0).
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
(2)若記區(qū)間[a,b]的長(zhǎng)度為b-a.問(wèn):是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時(shí),f(x)的值域?yàn)閰^(qū)間D,且D的長(zhǎng)度為12-t?請(qǐng)對(duì)你所得的結(jié)論給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時(shí),函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),并求出極值點(diǎn);
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知二次函數(shù)f(x)的圖象與x軸的兩交點(diǎn)為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數(shù)f(x)的圖象的頂點(diǎn)是(-1,2),且經(jīng)過(guò)原點(diǎn),求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案