若不等式|x+1|+|x-2|≥a恒成立,則a的取值范圍是
a≤3
a≤3
分析:求出絕對(duì)值的表達(dá)式的最小值,即可求出a取值范圍.
解答:解:因?yàn)閨x+1|+|x-2|的幾何意義是數(shù)軸上的點(diǎn)到-1,與到2的距離之和,顯然最小值為3,
所以a的取值范圍是:a≤3.
故答案為:a≤3.
點(diǎn)評(píng):本題考查絕對(duì)值不等式的解法,恒成立問(wèn)題的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
A.(不等式選做題)若不等式|x+1|+|x-2|≥a對(duì)任意x∈R恒成立,則a的取值范圍是
 

B.(幾何證明選做題)如圖,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,則AE=
 

精英家教網(wǎng)
C.(坐標(biāo)系與參數(shù)方程選做題)直角坐標(biāo)系xoy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建極坐標(biāo)系,設(shè)點(diǎn)A,B分別在曲線C1
x=3+cosθ
y=sinθ
 (θ為參數(shù))和曲線C2:p=1上,則|AB|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式|x-1|<a成立的充分條件是0<x<4,則實(shí)數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式|x-1|<a成立的充分條件是0<x<4,則實(shí)數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(A)若不等式|x+1|-|x-4|≥a+
4
a
,對(duì)任意的x∈R恒成立,則實(shí)數(shù)a的取值范圍是
(-∞,4]∪[-1,0)
(-∞,4]∪[-1,0)

(B)已知直線l:
x=a+2t
y=-1-t
(t為參數(shù)),圓C:ρ=2
2
cos(θ-
π
4
)(極軸與x軸的非負(fù)半軸重合,且單位長(zhǎng)度相同),若直線l被圓C截得弦長(zhǎng)為2,則a=
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(考生注意:請(qǐng)?jiān)谙铝卸}中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分.)
(A)(選修4-4坐標(biāo)系與參數(shù)方程)曲線
x=cosα
y=a+sinα
(α為參數(shù))與曲線ρ2-2ρcosθ=0的交點(diǎn)個(gè)數(shù)為
 
個(gè).
(B)(選修4-5不等式選講)若不等式|x+1|+|x-3| ≥a+
4
a
對(duì)任意的實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案