分析 (1)直接利用基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運(yùn)算法則求解;
(2)求出導(dǎo)函數(shù)的零點(diǎn),由零點(diǎn)對(duì)定義域分段,進(jìn)一步求出函數(shù)在[-2,2]上的極值及區(qū)間端點(diǎn)值得答案.
解答 解:(1)∵f(x)=x3+$\frac{1}{2}$x2-4x,
∴f′(x)=3x2+x-4;
(2)由f′(x)=3x2+x-4=0,得x=-$\frac{4}{3}$或x=1.
當(dāng)x∈(-∞,-$\frac{4}{3}$)∪(1,+∞)時(shí),f′(x)>0;
當(dāng)x∈(-$\frac{4}{3}$,1)時(shí),f′(x)<0.
∴f(x)的增區(qū)間為(-∞,-$\frac{4}{3}$),(1,+∞),減區(qū)間為(-$\frac{4}{3}$,1).
∴f(x)的極大值為f(-$\frac{4}{3}$)=$\frac{104}{27}$,極小值為f(1)=$-\frac{5}{2}$.
又f(-2)=2,f(2)=2.
∴函數(shù)在區(qū)間[-2,2]上的最小值是$-\frac{5}{2}$,最大值是$\frac{104}{27}$.
點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)求函數(shù)在閉區(qū)間上的最值,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{AD}$=-2$\overrightarrow{AB}$+3$\overrightarrow{AC}$ | B. | $\overrightarrow{AD}$=$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$ | C. | $\overrightarrow{AD}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AC}$ | D. | $\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2+2i | B. | 2-2i | C. | 1+i | D. | 1-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com