已知數(shù)列{an}中,an=2-
1
an-1
(n≥2),a1=
3
5
,bn=
1
an-1
(n∈N*
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{an}中的最大項(xiàng)和最小項(xiàng),并說(shuō)明理由.
考點(diǎn):數(shù)列遞推式
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)利用等差數(shù)列的定義,進(jìn)行證明;
(2)依題意有an-1=
1
n-3.5
,求導(dǎo)數(shù),確定函數(shù)的單調(diào)性,即可得出結(jié)論.
解答: (1)證明:bn+1-bn=
1
an+1-1
-
1
an-1
=
1
2-
1
an
-1
-
1
an-1
=1,
∵a1=
3
5
,∴b1=-
5
2
,
∴數(shù)列{bn}是以-
5
2
為首項(xiàng),1為公差的等差數(shù)列;
(2)解:依題意有an-1=
1
n-3.5
,
對(duì)于函數(shù)y=
1
x-3.5
,在x>3.5時(shí),y>0,y′<0,在(3.5,+∞)上為減函數(shù).且y>0,故當(dāng)n=4時(shí),an=
1
n-3.5
+1取最大值3.
而函數(shù)y=
1
x-3.5
,在x<3.5時(shí),y<0,y′<0,
在(-∞,3.5)上也為減函數(shù).且y<0,故當(dāng)n=3時(shí),取最小值,a3=-1.
∴數(shù)列{an}中的最大項(xiàng)是a4=3;最小項(xiàng)是a3=-1
點(diǎn)評(píng):本題考查數(shù)列遞推式,考查等差數(shù)列的證明,考查導(dǎo)數(shù)知識(shí)的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

今有10個(gè)大小相同的乒乓球都放在一個(gè)黑色的袋子里,其中4個(gè)球上標(biāo)了數(shù)字1,3個(gè)球上標(biāo)了數(shù)字2,剩下的球都標(biāo)了數(shù)字5,現(xiàn)從中任取3個(gè)球,求所取的球數(shù)字總和超過(guò)8的概率是( 。
A、
19
120
B、
23
120
C、
31
120
D、
37
120

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)滿足①f(x)+f(2-x)=0,②f(x)-f(-2-x)=0,③在[-1,1]上表達(dá)式為,f(x)=
1-x2
x∈[-1,0]
1-x;x∈(0,1]
則函數(shù)f(x)與函數(shù)g(x)=
2x,x≤0
log
1
2
x
,x>0
的圖象在區(qū)間[-3,3]上的交點(diǎn)個(gè)數(shù)為( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m(x+m+3)(x+m+5),g(x)=3x-3,且同時(shí)滿足條件:①?x∈R,f(x)<0或g(x)<0; ②?x∈(-∞,-2),f(x)•g(x)<0,則m的取值范圍(  )
A、(-∞,-2)
B、(-4,-3)
C、(-3,0)
D、(-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某初級(jí)中學(xué)共有學(xué)生2000名,各年級(jí)男、女生人數(shù)如表:
初一年級(jí)初二年級(jí)初三年級(jí)
女生373xy
男生377370z
已知在全校學(xué)生中隨機(jī)抽取1名,抽到初二年級(jí)女生的概率是0.19.
(1)求x的值;
(2)現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,問(wèn)應(yīng)在初三年級(jí)抽取多少名?
(3)已知y≥245,z≥245,求初三年級(jí)中女生比男生多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x3+x2,g(x)=alnx(a≠0,a∈R).
(1)若對(duì)任意x∈[1,+∞),f(x)+g(x)≥-x3+(a+2)x恒成立,求實(shí)數(shù)a的取值范圍;
(2)證明:對(duì)n∈N*,不等式
1
In(n+1)
+
1
In(n+2)
+…+
1
In(n+2013)
2013
n(n+2013)
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+bx+c,且f(1)=0
(1)若函數(shù)f(x)是偶函數(shù),求f(x)的解析式;
(2)在(1)的條件下,求函數(shù)f(x)在[-1,3]上的最大、最小值;
(3)要使函數(shù)f(x)在[-1,3]上是單調(diào)函數(shù),求b的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A、B是全集U={1,2,3,4,5,6,7,8,9}的子集,且A∩B={2},(∁UA)∩(∁UB)={1,9},(∁UA)∩B={4,6,8},求集合A、B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的幾何體中,四邊形ABEF是長(zhǎng)方形,DA⊥平面ABEF,BC∥AD,G,H分別為DF,CE的中點(diǎn),且AD=AF=2BC.
(Ⅰ)求證:GH∥平面ABCD;
(Ⅱ)求三棱錐E-BCD與D-BEF的體積之比.

查看答案和解析>>

同步練習(xí)冊(cè)答案