精英家教網 > 高中數學 > 題目詳情

【題目】平面α過正方體ABCD﹣A1B1C1D1的頂點A,α∥平面CB1D1 , α∩平面ABCD=m,α∩平面ABB1A1=n,則m、n所成角的正弦值為(
A.
B.
C.
D.

【答案】A
【解析】解:如圖:α∥平面CB1D1 , α∩平面ABCD=m,α∩平面ABA1B1=n, 可知:n∥CD1 , m∥B1D1 , ∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.
則m、n所成角的正弦值為:
故選:A.

【考點精析】解答此題的關鍵在于理解異面直線及其所成的角的相關知識,掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現兩條異面直線間的關系.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中點. (Ⅰ)求證:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值為 ,求直線PA與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐P﹣ABCD的正視圖1是一個底邊長為4、腰長為3的等腰三角形,圖2、圖53分別是四棱錐P﹣ABCD的側視圖和俯視圖.
(1)求證:AD⊥PC;
(2)求四棱錐P﹣ABCD的側面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合M是由滿足下列性質的函數f(x)的全體所組成的集合:在定義域內存在x0 , 使得f(x0+1)=f(x0)+f(1)成立.
(1)指出函數f(x)= 是否屬于M,并說明理由;
(2)設函數f(x)=lg 屬于M,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】底面是正多邊形,頂點在底面的射影是底面中心的棱錐叫正棱錐.已知同底的兩個正三棱錐內接于同一個球.已知兩個正三棱錐的底面邊長為a,球的半徑為R.設兩個正三棱錐的側面與底面所成的角分別為α、β,則tan(α+β)的值是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fk(x)=ax+ka﹣x , (k∈Z,a>0且a≠1). (Ⅰ)若f1(1)=3,求f1 )的值;
(Ⅱ)若fk(x)為定義在R上的奇函數,且a>1,是否存在實數λ,使得fk(cos2x)+fk(2λsinx﹣5)<0對任意x∈[0, ]恒成立,若存在,請求出實數k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C:9x2+y2=m2(m>0),直線l不過原點O且不平行于坐標軸,l與C有兩個交點A,B,線段AB的中點為M.
(1)證明:直線OM的斜率與l的斜率的乘積為定值;
(2)若l過點( ,m),延長線段OM與C交于點P,四邊形OAPB能否為平行四邊形?若能,求此時l的斜率;若不能,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系x0y中,已知點A(﹣ ,0),B( ),E為動點,且直線EA與直線EB的斜率之積為﹣ . (Ⅰ)求動點E的軌跡C的方程;
(Ⅱ)設過點F(1,0)的直線l與曲線C相交于不同的兩點M,N.若點P在y軸上,且|PM|=|PN|,求點P的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數

)當為自然對數的底數)時,求的極小值;

Ⅱ)若函數存在唯一零點,求的取值范圍

查看答案和解析>>

同步練習冊答案