已知數(shù)列,設(shè)數(shù)列滿足 
(1)求數(shù)列的前項(xiàng)和為
(2)若數(shù)列,若對(duì)一切正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.

(1);(2)

解析試題分析:(1)根據(jù)題意可以得到等比數(shù)列的通項(xiàng)公式為,∵
,因此是1為首項(xiàng)3為公差的等差數(shù)列,從而可以求得的前n項(xiàng)和 ;
(2)對(duì)一切正整數(shù)n恒成立,等價(jià)于,可以得到數(shù)列從第二項(xiàng)起是遞減的,而,因此問題等價(jià)于求使不等式成立的m的取值范圍,從而得到
(1)由題意知,,又∵,∴
 ,∴;
(2)由(1)知,

∴當(dāng)n=1時(shí),
當(dāng)時(shí),,即;
∴當(dāng)n=1時(shí),取最大值是
對(duì)一切正整數(shù)恒成立,∴;
 .    
考點(diǎn):1、等差、等比數(shù)列的前n項(xiàng)和;2、數(shù)列單調(diào)性的判斷;3、恒成立問題的處理方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列的前n項(xiàng)和為,且滿足條件
(1)求數(shù)列的通項(xiàng)公式;
(2)令,若對(duì)任意正整數(shù),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足:,且、、成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式.
(2)記為數(shù)列的前項(xiàng)和,是否存在正整數(shù),使得若存在,求的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某種汽車購買時(shí)費(fèi)用為16.9萬元,每年應(yīng)交付保險(xiǎn)費(fèi)、汽油費(fèi)費(fèi)用共1.5萬元,汽車的維修費(fèi)
用為:第一年0.4萬元,第二年0.6萬元,第三年0.8萬元,依等差數(shù)列逐年遞增.
(1)設(shè)該車使用n年的總費(fèi)用(包括購車費(fèi)用)為試寫出的表達(dá)式;
(2)求這種汽車使用多少年報(bào)廢最合算(即該車使用多少年平均費(fèi)用最少).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2011•湖北)已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:a1=a(a≠0),an+1=rSn(n∈N*,r∈R,r≠﹣1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若存在k∈N*,使得Sk+1,Sk,Sk+2成等差數(shù)列,試判斷:對(duì)于任意的m∈N*,且m≥2,am+1,am,am+2是否成等差數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2013·天津模擬)已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2(n∈N*),數(shù)列{bn}滿足b1=1,且點(diǎn)P(bn,bn+1)(n∈N*)在直線y=x+2上.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式.
(2)求數(shù)列{an·bn}的前n項(xiàng)和Dn
(3)設(shè)cn=an·sin2-bn·cos2(n∈N*),求數(shù)列{cn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的首項(xiàng),公差,數(shù)列是等比數(shù)列,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列對(duì)任意正整數(shù)n,均有成立,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知公比不為的等比數(shù)列的首項(xiàng),前項(xiàng)和為,且成等差數(shù)列.
(1)求等比數(shù)列的通項(xiàng)公式;
(2)對(duì),在之間插入個(gè)數(shù),使這個(gè)數(shù)成等差數(shù)列,記插入的這個(gè)數(shù)的和為,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)的公差大于零的等差數(shù)列,已知,.
(1)求的通項(xiàng)公式;
(2)設(shè)是以函數(shù)的最小正周期為首項(xiàng),以為公比的等比數(shù)列,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案