【題目】某市大力推廣純電動汽車,對購買用戶依照車輛出廠續(xù)駛里程的行業(yè)標(biāo)準(zhǔn),予以地方財(cái)政補(bǔ)貼.其補(bǔ)貼標(biāo)準(zhǔn)如下表:

2017年底隨機(jī)調(diào)査該市1000輛純電動汽車,統(tǒng)計(jì)其出廠續(xù)駛里程,得到頻率分布直方圖如圖所示.

用樣本估計(jì)總體,頻率估計(jì)概率,解決如下問題:

(1)求該市純電動汽車2017年地方財(cái)政補(bǔ)貼的均值;

(2)某企業(yè)統(tǒng)計(jì)2017年其充電站100天中各天充電車輛數(shù),得如下的頻數(shù)分布表:

(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)

2018年2月,國家出臺政策,將純電動汽車財(cái)政補(bǔ)貼逐步轉(zhuǎn)移到充電基礎(chǔ)設(shè)施建設(shè)上來.該企業(yè)擬將轉(zhuǎn)移補(bǔ)貼資金用于添置新型充電設(shè)備.現(xiàn)有直流、交流兩種充電樁可供購置.直流充電樁5萬元/臺,每臺每天最多可以充電30輛車,每天維護(hù)費(fèi)用500元/臺; 交流充電樁1萬元/臺,每臺每天最多可以充電4輛車,每天維護(hù)費(fèi)用80元/臺.

該企業(yè)現(xiàn)有兩種購置方案:

方案一:購買100臺直流充電樁和900臺交流充電樁;

方案二:購買200臺直流充電樁和400臺交流充電樁.

假設(shè)車輛充電時(shí)優(yōu)先使用新設(shè)備,且充電一輛車產(chǎn)生25元的收入,用2017年的統(tǒng)計(jì)數(shù)據(jù),分別估計(jì)該企業(yè)在兩種方案下新設(shè)備產(chǎn)生的日利潤.(日利潤日收入日維護(hù)費(fèi)用)

【答案】(1)3.95;(2)見解析

【解析】分析:(1)由頻率分布直方圖求出補(bǔ)貼分別是3萬元,4萬元,4.5萬元的概率,即得概率分布列,然后可計(jì)算出平均值;

(2)由頻數(shù)分布表計(jì)算出每天需要充電車輛數(shù)的分布列,分別計(jì)算出兩種方案中新設(shè)備可主觀能動性車輛數(shù),從而得實(shí)際充電車輛數(shù)的分布列,由分布列可計(jì)算出均值,從而計(jì)算出日利潤.

詳解:(1)依題意可得純電動汽車地方財(cái)政補(bǔ)貼的分布列為:

純電動汽車2017年地方財(cái)政補(bǔ)貼的平均數(shù)為(萬元)

(2)由充電車輛天數(shù)的頻數(shù)分布表得每天需要充電車輛數(shù)的分布列:

若采用方案一,100臺直流充電樁和900臺交流充電樁每天可充電車輛數(shù)為

(輛)

可得實(shí)際充電車輛數(shù)的分布列如下表:

于是方案一下新設(shè)備產(chǎn)生的日利潤均值為

(元)

若采用方案二,200臺直流充電樁和400臺交流充電樁每天可充電車輛數(shù)為(輛)

可得實(shí)際充電車輛數(shù)的分布列如下表:

于是方案二下新設(shè)備產(chǎn)生的日利潤均值為(元)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一年級開設(shè)五門選修課,每位同學(xué)須彼此獨(dú)立地從中選擇兩門課程,已知甲同學(xué)必選課程,乙同學(xué)不選課程,丙同學(xué)從五門課程中隨機(jī)任選兩門.

(1)求甲同學(xué)與乙同學(xué)恰有一門課程相同的概率;

(2)設(shè)為甲、乙、丙三位同學(xué)中選課程的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的部分圖像如圖所示.

(1)求函數(shù)的解析式;

(2)求圖中的值及函數(shù)的單調(diào)遞減區(qū)間;

(3)若將的圖象向左平移個(gè)單位后,得到的圖像關(guān)于直線對稱,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓與圓關(guān)于直線對稱.

(1)求圓的方程;

(2)過直線上的點(diǎn)分別作斜率為的兩條直線,使得被圓截得的弦長與被圓截得的弦長相等.

(i)求的坐標(biāo);

(ⅱ)過任作兩條互相垂直的直線分別與兩圓相交,判斷所得弦長是否恒相等,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,M(﹣2,0).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,A(ρ,θ)為曲線C上一點(diǎn),B(ρ,θ+ ),且|BM|=1.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)求|OA|2+|MA|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為直線,是兩個(gè)不同的平面,下列命題中正確的是(  )

A. α,β,則αβB. α,β,則αβ

C. α,β,則αβD. αβ,α,則β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B、C為⊙O上三點(diǎn),B為 的中點(diǎn),P為AC延長線上一點(diǎn),PQ與⊙O相切于點(diǎn)Q,BQ與AC相交于點(diǎn)D.
(Ⅰ)證明:△DPQ為等腰三角形;
(Ⅱ)若PC=1,AD=PD,求BDQD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=x3+ax2+bx(a,b∈R)的圖象與x軸相切于一點(diǎn)A(m,0)(m≠0),且f(x)的極大值為 ,則m的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上的點(diǎn)到其焦點(diǎn)的距離為.

(Ⅰ)求的方程;

(Ⅱ) 已知直線不過點(diǎn)且與相交于,兩點(diǎn),且直線與直線的斜率之積為1,證明:過定點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案