精英家教網 > 高中數學 > 題目詳情
下列推理是歸納推理的是(  )
A、A,B為定點,動點P滿足|PA|+|PB|=2a>|AB|,則P點的軌跡為橢圓
B、由a1=1,an=3n-1,求出S1,S2,S3,猜想出數列的前n項和Sn的表達式
C、由圓x2+y2=r2的面積πr2,猜想出橢圓
x2
a2
+
y2
b2
=1的面積S=πab
D、以上均不正確
考點:歸納推理
專題:規(guī)律型
分析:本題考查的是選歸納推理的定義,判斷一個推理過程是否是歸納推理關鍵是看他是否符合歸納推理的定義,即是否是由特殊到一般的推理過程.
解答: 解:A選項用的雙曲線的定義進行推理,不符合要求.
B選項根據前3個S1,S2,S3的值,猜想出Sn的表達式,屬于歸納推理,符合要求.
C選項由圓x2+y2=r2的面積S=πr2,猜想出橢圓
x2
a2
+
y2
b2
=1的面積S=πab,用的是類比推理,不符合要求.
故選:B.
點評:判斷一個推理過程是否是歸納推理關鍵是看他是否符合歸納推理的定義,即是否是由特殊到一般的推理過程.
判斷一個推理過程是否是類比推理關鍵是看他是否符合類比推理的定義,即是否是由特殊到與它類似的另一個特殊的推理過程.
判斷一個推理過程是否是演繹推理關鍵是看他是否符合演繹推理的定義,能否從推理過程中找出“三段論”的三個組成部分.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

曲線y=x3-x+2在點(1,2)處的切線方程為( 。
A、y=2x
B、y=x+1
C、y=2x+1
D、y=-2x+4

查看答案和解析>>

科目:高中數學 來源: 題型:

復數
2-i
3-4i
的值是(  )
A、
2
5
+
1
5
i
B、
2
5
-
1
5
i
C、-
2
5
+
1
5
i
D、-
2
5
-
1
5
i

查看答案和解析>>

科目:高中數學 來源: 題型:

已知復數z1=cosα+isinα和復數z2=cosβ+isinβ,則復數z1•z2的實部是( 。
A、sin(α-β)
B、sin(α+β)
C、cos(α-β)
D、cos(α+β)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>0,b>0,利用函數f(x)=3x+kx(k>0)的單調性,下列結論正確的是( 。
A、若3a+2a=3b+3b,則a>b
B、若3a+2a=3b+3b,則a<b
C、若2a-2a=2b-3b,則a>b
D、若2a-2a=2b-3b,則a<b

查看答案和解析>>

科目:高中數學 來源: 題型:

對任意的x∈R,函數f(x)=x3+ax2+7ax不存在極值點的充要條件是( 。
A、a=0或a=7
B、a<0或a>21
C、0≤a≤21
D、a=0或a=21

查看答案和解析>>

科目:高中數學 來源: 題型:

橢圓a2x2-
a
2
y2=1的一個焦點是(-2,0),則a等于(  )
A、
1-
3
4
B、
1-
5
4
C、
-1±
3
4
D、
-1±
5
4

查看答案和解析>>

科目:高中數學 來源: 題型:

下列命題是真命題的是( 。
A、a>b是ac2>bc2的充要條件
B、a>1,b>1是ab>1的充分條件
C、?x0∈R,e x0≤0
D、若p∨q為真命題,則p∧q為真

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△AOB中,∠AOB=
π
2
,且向量
OA
=(-1,3),
OB
=(cosα,-sinα).
(1)求
sin(π-2α)+cos2α
2cos2α+sin2α+2

(2)若α是鈍角,α-β是銳角,且sin(α-β)=
3
5
,求sinβ的值.

查看答案和解析>>

同步練習冊答案