雙曲線
x2
16
-
y2
9
=1
的左、右焦點(diǎn)分別F1、F2,P為雙曲線右支上的點(diǎn),△PF1F2的內(nèi)切圓與x軸相切于點(diǎn)C,則圓心I到y(tǒng)軸的距離為( 。
A、1B、2C、3D、4
分析:設(shè)三角形內(nèi)切圓的切點(diǎn)為A,B,C,其中C在X軸上,那么|F2C|-|F1C|=|F2A|-|F1B|,又AP=PB,所以|F2C|-|F1C|=|F2A|-|F1B|=|F2A|+|AP|-|F1B|-|BP|=|F2P|-|F1P|=2a=8,又|F2C|+|F1C|=|F1F2|=10,由此能求出圓心I到y(tǒng)軸的距離.
解答:解:設(shè)三角形內(nèi)切圓的切點(diǎn)為A,B,C,其中C在X軸上,那么|F2C|-|F1C|=|F2A|-|F1B|,
又AP=PB
所以|F2C|-|F1C|=|F2A|-|F1B|=|F2A|+|AP|-|F1B|-|BP|=|F2P|-|F1P|=2a=8,
又|F2C|+|F1C|=|F1F2|=10
所以C點(diǎn)的橫坐標(biāo)為4,I點(diǎn)的橫坐標(biāo)也為4,
故圓心I到y(tǒng)軸的距離為4.
故選D.
點(diǎn)評:本題考查圓錐曲線和直線 的綜合運(yùn)用,解題時要注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以雙曲線-3x2+y2=12的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓的方程是(  )
A、
x2
16
+
y2
12
=1
B、
x2
16
+
y2
4
=1
C、
x2
12
+
y2
16
=1
D、
x2
4
+
y2
16
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓以坐標(biāo)原點(diǎn)為中心,坐標(biāo)軸為對稱軸,且橢圓以拋物線y2=16x的焦點(diǎn)為其一個焦點(diǎn),以雙曲線
x2
16
-
y2
9
=1
的焦點(diǎn)為頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)A(-1,0),B(1,0),且C,D分別為橢圓的上頂點(diǎn)和右頂點(diǎn),點(diǎn)P是線段CD上的動點(diǎn),求
AP
BP
的取值范圍.
(3)試問在圓x2+y2=a2上,是否存在一點(diǎn)M,使△F1MF2的面積S=b2(其中a為橢圓的半長軸長,b為橢圓的半短軸長,F(xiàn)1,F(xiàn)2為橢圓的兩個焦點(diǎn)),若存在,求tan∠F1MF2的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是雙曲線
x2
16
-y2=1
的兩個焦點(diǎn),點(diǎn)M在雙曲線上,若△F1MF2的面積為1,則
MF1
MF2
的值為( 。
A、1
B、2
C、2
2
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓以坐標(biāo)原點(diǎn)為中心,坐標(biāo)軸為對稱軸,且該橢圓以拋物線y2=16x的焦點(diǎn)P為其一個焦點(diǎn),以雙曲線
x2
16
-
y2
9
=1
的焦點(diǎn)Q為頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)A(-1,0),B(1,0),且C、D分別為橢圓的上頂點(diǎn)和右頂點(diǎn),點(diǎn)M是線段CD上的動點(diǎn),求
AM
BM
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1、F2是雙曲線
x2
16
-y2=1
的兩個焦點(diǎn),點(diǎn)M在雙曲線上,若△F1MF2的面積為1,則
MF1
MF2
的值為( 。
A.1B.2C.2
2
D.0

查看答案和解析>>

同步練習(xí)冊答案