已知定點(diǎn)A(-
3
,0),B(
3
,0)
,動點(diǎn)P(x,y)滿足:||AP|-|BP||=2;
(1)求動點(diǎn)P的軌跡方程;
(2)直線mx-y+1=0與動點(diǎn)P的軌跡只有一個(gè)交點(diǎn),求實(shí)數(shù)m的值.
(1)∵定點(diǎn)A(-
3
,0),B(
3
,0)
,動點(diǎn)P(x,y)滿足:||AP|-|BP||=2,
∴||AP|-|BP||=2<|AB|=2
3
,
∴動點(diǎn)P的軌跡是A、B為焦點(diǎn)的雙曲線,且a=1,c=
3

b=
c2-a2
=
2
,
∴動點(diǎn)P的軌跡方程是x2-
y2
2
=1

(2)由mx-y+1=0可得y=mx+1,
代入x2-
y2
2
=1
,可得x2-
(mx+1)2
2
=1
,
即(2-m2)x2-2mx-3=0.
①2-m2=0,即m=±
2
時(shí),方程只有一個(gè)解,滿足題意;
②2-m2≠0時(shí),△=4m2+12(2-m2)=0,解得m=±
3
,
綜上所述,m=m=±
2
或m=±
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左,右兩個(gè)頂點(diǎn)分別為、.曲線是以、兩點(diǎn)為頂點(diǎn),離心率為的雙曲線.設(shè)點(diǎn)在第一象限且在曲線上,直線與橢圓相交于另一點(diǎn)
(1)求曲線的方程;
(2)設(shè)兩點(diǎn)的橫坐標(biāo)分別為,,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體ABCD-A1B1C1D1的棱長為1,點(diǎn)M在AB上,且AM=
1
3
,點(diǎn)P是平面ABCD上的動點(diǎn),且動點(diǎn)P到直線A1D1的距離與動點(diǎn)P到點(diǎn)M的距離的平方差為1,則動點(diǎn)的軌跡是( 。
A.圓B.拋物線C.雙曲線D.直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知l1和l2是平面內(nèi)互相垂直的兩條直線,它們的交點(diǎn)為A,異于點(diǎn)A的兩動點(diǎn)B、C分別在l1、l2上,且BC=3,則過A、B、C三點(diǎn)的動圓所形成的圖形面積為( 。
A.6πB.9πC.
2
D.
9
4
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)A為圓(x-1)2+y2=1上的動點(diǎn),PA是圓的切線且|PA|=1,則P點(diǎn)的軌跡方程( 。
A.(x-1)2+y2=4B.(x-1)2+y2=2C.y2=2xD.y2=-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知P是曲線y=2x2-1上的動點(diǎn),定點(diǎn)A(0,-1),且點(diǎn)P不同于點(diǎn)A,若M點(diǎn)滿足
PM
=2
MA
,求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)A(-2,0),B(2,0),直線AG,BG相交于點(diǎn)G,且它們的斜率之積是-
1
4

(Ⅰ)求點(diǎn)G的軌跡Ω的方程;
(Ⅱ)圓x2+y2=4上有一個(gè)動點(diǎn)P,且P在x軸的上方,點(diǎn)C(1,0),直線PA交(Ⅰ)中的軌跡Ω于D,連接PB,CD.設(shè)直線PB,CD的斜率存在且分別為k1,k2,若k1=λk2,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1,F(xiàn)2分別是橢圓+y2=1的左、右焦點(diǎn),P是第一象限內(nèi)該橢圓上的一點(diǎn),且PF1⊥PF2,則點(diǎn)P的橫坐標(biāo)為(  )
A.1B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若橢圓=1的焦點(diǎn)在x軸上,過點(diǎn)(1,)作圓x2+y2=1的切線,切點(diǎn)分別為A,B,直線AB恰好經(jīng)過橢圓的右焦點(diǎn)和上頂點(diǎn),則橢圓方程是________.

查看答案和解析>>

同步練習(xí)冊答案