對于函數(shù),若在定義域存在實數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;
(2)設(shè)是定義在上的“局部奇函數(shù)”,求實數(shù)的取值范圍.
(1)是“局部奇函數(shù)”;(2).
解析試題分析:(1)本題實質(zhì)就是解方程,如果這個方程有實數(shù)解,就說明是“局部奇函數(shù)”,如果這個方程無實數(shù)解,就說明不是“局部奇函數(shù)”,易知有實數(shù)解,因此答案是肯定的;(2)已經(jīng)明確是“局部奇函數(shù)”,也就是說方程一定有實數(shù)解,問題也就變成方程在上有解,求參數(shù)的取值范圍,又方程可變形為,因此求的取值范圍,就相當于求函數(shù)的值域,用換元法(設(shè)),再借助于函數(shù)的單調(diào)性就可求出.
試題解析:(1)為“局部奇函數(shù)”等價于關(guān)于的方程有解.
即(3分)
有解為“局部奇函數(shù)”.(5分)
(2)當時, 可轉(zhuǎn)化為(8分)
因為的定義域為,所以方程在上有解,令,(9分)
則
因為在上遞減,在上遞增,(11分)
(12分)
即(14分)
考點:新定義概念,方程有解求參數(shù)取值范圍問題.
科目:高中數(shù)學 來源: 題型:解答題
(12分)(2011•福建)設(shè)函數(shù)f(θ)=,其中,角θ的頂點與坐標原點重合,始邊與x軸非負半軸重合,終邊經(jīng)過點P(x,y),且0≤θ≤π.
(Ⅰ)若點P的坐標為,求f(θ)的值;
(Ⅱ)若點P(x,y)為平面區(qū)域Ω:上的一個動點,試確定角θ的取值范圍,并求函數(shù)f(θ)的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
為了尋找馬航殘骸,我國“雪龍?zhí)枴笨瓶即?014年3月26日從港口出發(fā),沿北偏東角的射線方向航行,而在港口北偏東角的方向上有一個給科考船補給物資的小島,海里,且.現(xiàn)指揮部需要緊急征調(diào)位于港口正東海里的處的補給船,速往小島裝上補給物資供給科考船.該船沿方向全速追趕科考船,并在處相遇.經(jīng)測算當兩船運行的航線與海岸線圍成的三角形的面積最小時,這種補給方案最優(yōu).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)應征調(diào)位于港口正東多少海里處的補給船只,補給方案最優(yōu)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
橢圓c:(a>b>0)的離心率為,過其右焦點F與長軸垂直的弦長為1,
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左右頂點分別為A,B,點P是直線x=1上的動點,直線PA與橢圓的另一個交點為M,直線PB與橢圓的另一個交點為N,求證:直線MN經(jīng)過一定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某廠擬在2014年通過廣告促銷活動推銷產(chǎn)品.經(jīng)調(diào)查測算,產(chǎn)品的年銷售量(假定年產(chǎn)量=年銷售量)萬件與年廣告費用萬元滿足關(guān)系式:(為常數(shù)).若不做廣告,則產(chǎn)品的年銷售量恰好為1萬件.已知2014年生產(chǎn)該產(chǎn)品時,該廠需要先固定投入8萬元,并且預計生產(chǎn)每1萬件該產(chǎn)品時,需再投入4萬元,每件產(chǎn)品的銷售價格定為每件產(chǎn)品所需的年平均成本的1.5倍(每件產(chǎn)品的成本包括固定投入和生產(chǎn)再投入兩部分,不包括廣告促銷費用).
(1)將2014年該廠的年銷售利潤(萬元)表示為年廣告促銷費用(萬元)的函數(shù);
(2)2014年廣告促銷費用投入多少萬元時,該廠將獲利最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知冪函數(shù)為偶函數(shù).
(1)求的解析式;
(2)若函數(shù)在區(qū)間(2,3)上為單調(diào)函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)f(x)=|lg x|,a,b為實數(shù),且0<a<b.
(1)求方程f(x)=1的解;
(2)若a,b滿足f(a)=f(b)=2f,
求證:a·b=1,>1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com