已知命題p:關(guān)于x的方程x2-ax+4=0有實(shí)根;命題q:關(guān)于x的函數(shù)y=2x2+ax+4在[3,+∞)上是增函數(shù),若“p或q”是真命題,“p且q”是假命題,求實(shí)數(shù)a的取值范圍.
分析:由已知中,命題p:關(guān)于x的方程x2-ax+4=0有實(shí)根;命題q:關(guān)于x的函數(shù)y=2x2+ax+4在[3,+∞)上是增函數(shù),我們可以求出命題p與命題q為真或假時(shí),實(shí)數(shù)a的取值范圍,又由“p或q”為真,“p且q”為假,構(gòu)造關(guān)于a的不等式組,解不等式組即可得到實(shí)數(shù)a的取值范圍.
解答:解:若p真:則△=a2-4×4≥0
∴a≤-4或a≥4(4分)
若q真:-
a
4
≤3
,
∴a≥-12(8分)
由“p或q”是真命題,“p且q”是假命題得:p、q兩命題一真一假(10分)
當(dāng)p真q假時(shí):a<-12;當(dāng)p假q真時(shí):-4<a<4(12分)
綜上,a的取值范圍為(-∞,-12)∪(-4,4)(14分)
點(diǎn)評:本題考查的知識點(diǎn)是命題的真假判斷與應(yīng)用,其中根據(jù)已知條件,求出命題p與命題q為真或假時(shí),實(shí)數(shù)a的取值范圍,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P:關(guān)于x的不等式x2+(a-1)x+1≤0的解集為∅,命題q:方程
x2
2
+
y2
a
=1表示焦點(diǎn)在y軸上的橢圓,若命題¬q為真命題,p∨q為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:關(guān)于x的方程x2-ax+4=0有實(shí)根,命題q:關(guān)于x函數(shù)y=2x2+ax+4在[3,+∞)上為增函數(shù),若“p或q”為真命題,“p且q”為假命題,則實(shí)數(shù)a取值范圍為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:關(guān)于x的不等式x2-2x-a>0解集為R;命題q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).如果“p且q”為假命題,“p或q”為真命題,則實(shí)數(shù)a的取值范圍為
[-1,1)∪(
5
2
,+∞)
[-1,1)∪(
5
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:“關(guān)于x的方程x2-ax+a=0無實(shí)根”和命題q:“函數(shù)f(x)=x2-ax+a在區(qū)間[-1,+∞)上單調(diào).如果命題p∨q是假命題,那么,實(shí)數(shù)a的取值范圍是( 。
A、(0,4)B、(-∞,2]∪(0,4)C、(-2,0]∪[4,+∞)D、[-2,0)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:關(guān)于x的方程x2-2x+a=0有實(shí)根,命題q:函數(shù)f(x)=(a+1)x+2是減函數(shù),若p∨q是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案