精英家教網 > 高中數學 > 題目詳情
定義在R上的函數f(x)的圖象關于點或中心對稱,對任意的實數x均有且f(-1)=1,f(0)=-2,則f(1)+f(2)+…+f(2009)的值為    
【答案】分析:根據題意需要反復給x恰當的值代入,求出函數的周期,再由函數圖象關于點成中心對稱,得到關系式f(+x)=-f(-x),利用條件和給x恰當的值求出函數在一個周期上的函數值,故求出一個周期內的函數值的和,根據函數的周期求式子的值.
解答:解:由f(x+)=-f(x),得f(x+3)=f[(x+)+]=-f(x+)=f(x),則有周期T=3.
又∵f(x)的圖象關于點成中心對稱,即f(+x)=-f(-x),
令x=代入上式,得f(-)=-f(-1),即f(1)=f(-+)=-f(-)=f(-1)=1,
∵f(-1)=1,f(0)=-2,函數的周期是3,
∴f(1+3k)=f(-2)=1,f(2+3k)=f(-1)=1,f(3+3k)=f(0)=-2,其中k是任意整數.
則f(1)+f(2)+…+f(2009)=[f(1)+f(2)+f(3)]+f(2008)+f(2009)
=669×(1+1-2)+f(1)+f(2)=2.
故答案為:2.
點評:本題是一道抽象函數問題,題目的設計“小而巧”,解題的關鍵是巧妙的賦值,利用其奇偶性得到函數的周期性,再利用周期性求函數值.靈活的“賦值法”和反復利用恒等式是解決抽象函數問題的基本方法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義在R上的函數f(x)既是偶函數又是周期函數,若f(x)的最小正周期是π,且當x∈[0,
π
2
]時,f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

20、已知定義在R上的函數f(x)=-2x3+bx2+cx(b,c∈R),函數F(x)=f(x)-3x2是奇函數,函數f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在R上的函數f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當x∈(0,4)時,f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個最低點之間距離為π,函數y=sin(2x+
π
3
)圖象所有對稱中心都在f(x)圖象的對稱軸上.
(1)求f(x)的表達式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
,
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x)的圖象是連續(xù)不斷的,且有如下對應值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數f(x)一定存在零點的區(qū)間是( 。

查看答案和解析>>

同步練習冊答案