定長為3的線段兩端點分別在軸,軸上滑動,在線段上,且
(1)求點的軌跡的方程.
(2)設過且不垂直于坐標軸的直線交軌跡兩點.問:線段上是否存在一點,使得以為鄰邊的平行四邊形為菱形?作出判斷并證明.
(1)
(2)存在滿足條件的D,證明略。

     ………………4分
(2)存在滿足條件的D 
設D(0,m),   設直線l的方程為
代入橢圓方程得
 則  …………7分
以DA,DB為鄰邊的四邊形為菱形
 
的方向向量為(1,
   所以存在滿足條件的D……12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
在平面直角坐標系中,設點(1,0),直線:,點在直線上移動,是線段軸的交點, .
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)記的軌跡的方程為,過點作兩條互相垂直的曲線的弦、,設、 的中點分別為.求證:直線必過定點

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)在平面直角坐標系中,已知,,),,O為坐標原點,若實數(shù)使向量,滿足:,設點P的軌跡為
(Ⅰ)求的方程,并判斷是怎樣的曲線;
(Ⅱ)當時,過點且斜率為1的直線與相交的另一個交點為,能否在直線上找到一點,恰使為正三角形?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知為坐標原點,點F、T、M、P分別滿足.
(1) 當t變化時,求點P的軌跡方程;
(2) 若的頂點在點P的軌跡上,且點A的縱坐標,的重心恰好為點F,
求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分13 分)
已知橢圓的右焦點F 與拋物線y2 =" 4x" 的焦點重合,短軸長為2.橢圓的右準線l與x軸交于E,過右焦點F 的直線與橢圓相交于A、B 兩點,點C 在右準線l上,BC//x 軸.
(1)求橢圓的標準方程,并指出其離心率;
(2)求證:線段EF被直線AC 平分.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知點(x, y)是曲線C上任意一點,將此點的縱坐標變?yōu)樵瓉淼?倍,對應的橫坐標不變,得到的點滿足方程;定點M(2,1),平行于OM的直線在y軸上的截距為m(m≠0),直線與曲線C交于A、B兩個不同點.
(1)求曲線的方程;
(2)求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題



(本小題滿分10分)
如圖,在平面直角坐標系中,點在第一象限內(nèi),軸于點 .
(1)求的長;
(2)記,.(為銳角),求sina,sin的值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

從圓:上任意一點軸作垂線,垂足為,點是線 的中點,則點的軌跡方程是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是三角形的一個內(nèi)角,且,則方程所表示的曲線是(  )
A.焦點在軸上的雙曲線B.焦點在軸上的雙曲線
C.焦點在軸上的橢圓D.焦點在軸上的橢圓

查看答案和解析>>

同步練習冊答案