定長為3的線段
兩端點
分別在
軸,
軸上滑動,
在線段
上,且
(1)求點
的軌跡
的方程.
(2)設過
且不垂直于坐標軸的直線
交軌跡
與
兩點.問:線段
上是否存在一點
,使得以
為鄰邊的平行四邊形為菱形?作出判斷并證明.
(1)
.
(2)存在滿足條件的D,證明略。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)
在平面直角坐標系
中,設點
(1,0),直線
:
,點
在直線
上移動,
是線段
與
軸的交點,
.
(Ⅰ)求動點
的軌跡的方程;
(Ⅱ)記
的軌跡的方程為
,過點
作兩條互相垂直的曲線
的弦
、
,設
、
的中點分別為
.求證:直線
必過定點
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)在平面直角坐標系中,已知
,
,
(
),
,O為坐標原點,若實數(shù)
使向量
,
和
滿足:
,設點P的軌跡為
.
(Ⅰ)求
的方程,并判斷
是怎樣的曲線;
(Ⅱ)當
時,過點
且斜率為1的直線與
相交的另一個交點為
,能否在直線
上找到一點
,恰使
為正三角形?請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)已知
為坐標原點,點
F、T、M、P分別滿足
.
(1) 當
t變化時,求點
P的軌跡方程;
(2) 若
的頂點在點
P的軌跡上,且點
A的縱坐標
,
的重心恰好為點
F,
求直線
BC的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分13 分)
已知橢圓的右焦點F 與拋物線y2 =" 4x" 的焦點重合,短軸長為2.橢圓的右準線l與x軸交于E,過右焦點F 的直線與橢圓相交于A、B 兩點,點C 在右準線l上,BC//x 軸.
(1)求橢圓的標準方程,并指出其離心率;
(2)求證:線段EF被直線AC 平分.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)已知點(x, y)是曲線C上任意一點,將此點的縱坐標變?yōu)樵瓉淼?倍,對應的橫坐標不變,得到的點滿足方程
;定點M(2,1),平行于OM的直線
在y軸上的截距為
m(
m≠0),直線
與曲線C交于A、B兩個不同點.
(1)求曲線
的方程;
(2)求
m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿
分10分)
如圖,在平面直角坐標系中
,點
在第一象限內(nèi),
交
軸于點
,
.
(1)求
的長;
(2)記
,
.(
為銳角),求sina,sin
的值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
從圓
:
上任意一點
向
軸作垂線,垂足為
,點
是線
段
的中點,則點
的軌跡方程是(
)
查看答案和解析>>