若P=+,Q=+(a≥0),則P,Q的大小關(guān)系是( )
A.P>Q
B.P=Q
C.P<Q
D.由a的取值確定
【答案】分析:本題考查的知識(shí)點(diǎn)是證明的方法,觀察待證明的兩個(gè)式子P=+,Q=+,很難找到由已知到未知的切入點(diǎn),故我們可以用分析法來證明.
解答:解:∵要證P<Q,只要證P2<Q2
只要證:2a+7+2<2a+7+2,
只要證:a2+7a<a2+7a+12,
只要證:0<12,
∵0<12成立,
∴P<Q成立.
故選C
點(diǎn)評(píng):分析法──通過對(duì)事物原因或結(jié)果的周密分析,從而證明論點(diǎn)的正確性、合理性的論證方法,也稱為因果分析,從求證的不等式出發(fā),“由果索因”,逆向逐步找這個(gè)不等式成立需要具備的充分條件;綜合法是指從已知條件出發(fā),借助其性質(zhì)和有關(guān)定理,經(jīng)過逐步的邏輯推理,最后達(dá)到待證結(jié)論或需求問題,其特點(diǎn)和思路是“由因?qū)Ч保磸摹耙阎笨础翱芍,逐步推向“未知”?
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

9、下列結(jié)論錯(cuò)誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2、命題“若p,則q”真而逆命題是假,則p是q的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“若¬p,則q”的否命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列“若p,則q”形式的命題中,p是q的充分而不必要條件的有
0
0
個(gè).
①若x∈E或x∈F,則x∈E∪F;
②若關(guān)于x的不等式ax2-2ax+a+3>0的解集為R,則a>0;
③若
2
x
是有理數(shù),則x是無理數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為實(shí)數(shù),p:點(diǎn)M(1,1)在圓(x+a)2+(y-a)2=4的內(nèi)部; q:?x∈R,都有x2+ax+1≥0.
(1)若p為真命題,求a的取值范圍;
(2)若q為假命題,求a的取值范圍;
(3)若“p且q”為假命題,且“p或q”為真命題,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案