已知F1(-1,0),F(xiàn)2(1,0)是橢圓C的兩個(gè)焦點(diǎn),過F2且垂直于x軸的直線交于A、B兩點(diǎn),且|AB|=3,則C的方程為( 。
分析:設(shè)橢圓的方程為
x2
a2
+
y2
b2
=1
,根據(jù)題意可得
a2-b2
=1.再由AB經(jīng)過右焦點(diǎn)F2且垂直于x軸且|AB|=3算出A、B的坐標(biāo),代入橢圓方程得
12
a2
+
(
3
2
)
2
b2
=1
,兩式聯(lián)解即可算出a2=4,b2=3,從而得到橢圓C的方程.
解答:解:設(shè)橢圓的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,
可得c=
a2-b2
=1,所以a2-b2=1…①
∵AB經(jīng)過右焦點(diǎn)F2且垂直于x軸,且|AB|=3
∴可得A(1,
3
2
),B(1,-
3
2
),代入橢圓方程得
12
a2
+
(
3
2
)2
b2
=1
,…②
聯(lián)解①②,可得a2=4,b2=3
∴橢圓C的方程為
x2
4
+
y2
3
=1

故選:C
點(diǎn)評(píng):本題給出橢圓的焦距和通徑長(zhǎng),求橢圓的方程.著重考查了橢圓的標(biāo)準(zhǔn)方程和橢圓的簡(jiǎn)單幾何性質(zhì)等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1(-1,0),F(xiàn)2(1,0),A(
1
2
,0),動(dòng)點(diǎn)P滿足3
PF1
PA
+
PF2
PA
=0.
(1)求動(dòng)點(diǎn)P的軌跡方程.
(2)是否存在點(diǎn)P,使PA成為∠F1PF2的平分線?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1(-1,0),F(xiàn)2(1,0),點(diǎn)p滿足|
PF
1
|+|
PF
2
|=2
2
,記點(diǎn)P的軌跡為E.
(Ⅰ)求軌跡E的方程;
(Ⅱ)過點(diǎn)F2(1,0)作直線l與軌跡E交于不同的兩點(diǎn)A、B,設(shè)
F2A
F2B
,T(2,0),,若λ∈[-2,-1],求|
TA
+
TB
|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1(-1,0),F(xiàn)2(1,0)為橢圓
x2
a2
+
y2
b2
=1
的兩個(gè)焦點(diǎn),若橢圓上一點(diǎn)P滿足|
PF1
|+|
PF2
|=4
,則橢圓的離心率e=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1(-1,0)、F2(1,0)為橢圓的焦點(diǎn),且直線x+y-
7
=0
與橢圓相切.
(Ⅰ)求橢圓方程;
(Ⅱ)過F1的直線交橢圓于A、B兩點(diǎn),求△ABF2的面積S的最大值,并求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1(-1,0),F(xiàn)2(1,0)是橢圓
x2
a2
+
y2
b2
=1的兩個(gè)焦點(diǎn),點(diǎn)G與F2關(guān)于直線l:x-2y+4=0對(duì)稱,且GF1與l的交點(diǎn)P在橢圓上.
(I)求橢圓方程;
(II)若P、M(x1,y1),N(x2,y2)是橢圓上的不同三點(diǎn),直線PM、PN的傾斜角互補(bǔ),問直線MN的斜率是否是定值?如果是,求出該定值,如果不是,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案