6.函數(shù)$y={log_{\frac{1}{3}}}(-{x^2}+2x+8)$的值域為[-2,+∞).

分析 令f(x)=-x2+2x+8,再用復合函數(shù)的單調(diào)性求解.

解答 解:令f(x)=-x2+2x+8,
由f(x)>0,解得:-2<x<4,
而f(x)=-(x-1)2+9,
對稱軸x=1,開口向下,
f(x)的最大值是9,
故值域是(0,9],
f(x)→0時,y→+∞,
f(x)=9時,y=-2,
故函數(shù)$y={log_{\frac{1}{3}}}(-{x^2}+2x+8)$的值域為:[-2,+∞),
故答案為:[-2,+∞).

點評 本題主要考查用復合函數(shù)的單調(diào)性來求函數(shù)的值域.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)$f(x)=-|x|-\sqrt{x}+3$的零點所在區(qū)間為( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖1,在Rt△ABC中,∠C=90°,BC=6,AC=9,D,E分別為AC、AB上的點,且DE∥BC,DE=4,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.
(1)求證:A1C⊥平面BCDE;
(2)若M是A1D的中點,求CM與平面A1BE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知集合A={x|1<2x<8},集合B={x|0<log2x<1},則A∩B=( 。
A.{x|1<x<3}B.{x|1<x<2}C.{x|2<x<3}D.{x|0<x<2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.下列四組函數(shù)中表示同一函數(shù)的是( 。
A.f(x)=x,g(x)=($\sqrt{x}$)2B.f(x)=x2,g(x)=(x+1)2C.f(x)=0,g(x)=$\sqrt{x-1}+\sqrt{1-x}$D.f(x)=$\sqrt{{x}^{2}}$,g(x)=|x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某中學有6名愛好籃球的高三男生,現(xiàn)在考察他們的投籃水平與打球年限的關(guān)系,每人罰籃10次,其打球年限與投中球數(shù)如下表:$\left\{\begin{array}{l}{\widehat=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat\overline{x}}\end{array}\right.$
(Ⅰ)求投中球數(shù)y關(guān)于打球年限x(x∈N,0≤x≤16)的線性回歸方程,
(Ⅱ)若第6名同學的打球年限為11年,試估計他的投中球數(shù)(精確到整數(shù)).
學生編號12345
打球年限x/年35679
投中球數(shù)y/個23345

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若命題“p∨q”為真,且“¬p”為真,則( 。
A.p或q為假B.q假C.q真D.不能判斷q的真假

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.對具有線性相關(guān)的變量x,y有一組觀測數(shù)據(jù)(xi,yi)(i=1,2,…6),其回歸直線方程是$\widehaty=\frac{1}{4}x+a$,且x1+x2+…+x6=10,y1+y2+…+y6=4,則實數(shù)a的值是( 。
A.$\frac{2}{3}$3B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.用0,1,…,199給200個零件編號,并用系統(tǒng)抽樣的方法從中抽取10件作為樣本進行質(zhì)量檢測,若第一段中編號為5的零件被取出,則第四段中被取出的零件編號為35.

查看答案和解析>>

同步練習冊答案